RT Journal Article SR Electronic T1 Lysophosphatidylserine Stimulates L2071 Mouse Fibroblast Chemotactic Migration via a Process Involving Pertussis Toxin-Sensitive Trimeric G-Proteins JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1066 OP 1073 DO 10.1124/mol.105.018960 VO 69 IS 3 A1 Kyoung Sun Park A1 Ha-Young Lee A1 Mi-Kyoung Kim A1 Eun Ha Shin A1 Seong Ho Jo A1 Sang Doo Kim A1 Dong-Soon Im A1 Yoe-Sik Bae YR 2006 UL http://molpharm.aspetjournals.org/content/69/3/1066.abstract AB Lysophosphatidylserine (LPS) may be generated after phosphatidylserine-specific phospholipase A2 activation. However, the effects of LPS on cellular activities and the identities of its target molecules have not been fully elucidated. In this study, we observed that LPS stimulates an intracellular calcium increase in L2071 mouse fibroblast cells, and that this increase was inhibited by 1-[6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) but not by pertussis toxin, suggesting that LPS stimulates calcium signaling via G-protein coupled receptor-mediated phospholipase C activation. Moreover, LPS-induced calcium mobilization was not inhibited by the lysophosphatidic acid receptor antagonist, (S)-phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl} ester (VPC 32183), thus indicating that LPS binds to a receptor other than lysophosphatidic acid receptors. It was also found that LPS stimulates two types of mitogen-activated protein kinase [i.e., extracellular signal-regulated protein kinase (ERK) and p38 kinase] in L2071 cells. Furthermore, these LPS-induced ERK and p38 kinase activations were inhibited by pertussis toxin, which suggests the role of pertussis toxin-sensitive G-proteins in the process. In terms of functional issues, LPS stimulated L2071 cell chemotactic migration, which was completely inhibited by pertussis toxin, indicating the involvement of pertussis toxin-sensitive Gi protein(s). This chemotaxis of L2071 cells induced by LPS was also dramatically inhibited by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) and by 2′-amino-3′-methoxyflavone (PD98059). This study demonstrates that LPS stimulates at least two different signaling cascades, one of which involves a pertussis toxin-insensitive but phospholipase C-dependent intracellular calcium increase, and the other involves a pertussis toxin-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and ERK.