TY - JOUR T1 - The Highly Conserved DRY Motif of Class A G Protein-Coupled Receptors: Beyond the Ground State JF - Molecular Pharmacology JO - Mol Pharmacol SP - 959 LP - 964 DO - 10.1124/mol.106.029470 VL - 71 IS - 4 AU - G. Enrico Rovati AU - Valérie Capra AU - Richard R. Neubig Y1 - 2007/04/01 UR - http://molpharm.aspetjournals.org/content/71/4/959.abstract N2 - Despite extensive study of heptahelical G protein-coupled receptors (GPCRs), the precise mechanism of G protein activation is unknown. The role of one highly conserved stretch of residues, the amino acids glutamic acid/aspartic acid–arginine–tyrosine (i.e., the E/DRY motif), has received considerable attention with respect to regulating GPCR conformational states. In the consensus view, glutamic acid/aspartic acid maintains the receptor in its ground state, because mutations frequently induce constitutive activity (CA). This hypothesis has been confirmed by the rhodopsin ground-state crystal structure and by computational modeling approaches. However, some class A GPCRs are resistant to CA, suggesting alternative roles for the glutamic acid/aspartic acid residue and the E/DRY motif. Here, we propose two different subgroups of receptors within class A GPCRs that make different use of the E/DRY motif, independent of the G protein type (Gs, Gi, or Gq) to which the receptor couples. In phenotype 1 receptors, nonconservative mutations of the glutamic acid/aspartic acid–arginine residues, besides inducing CA, increase affinity for agonist binding, retain G protein coupling, and retain an agonist-induced response. In contrast, in second phenotype receptors, the E/DRY motif is more directly involved in governing receptor conformation and G protein coupling/recognition. Hence, mutations of the glutamic acid/aspartic acid residues do not induce CA. Conversely, nonconservative mutations of the arginine of the E/DRY motif always impair agonist-induced receptor responses and, generally, reduce agonist binding affinity. Thus, it is essential to look beyond the rhodopsin ground-state model of conformational activation to clarify the role of this highly conserved triplet in GPCR activation and function. The American Society for Pharmacology and Experimental Therapeutics ER -