TY - JOUR T1 - Ligand Activation of Peroxisome Proliferator-Activated Receptor-β/δ Inhibits Cell Proliferation in Human HaCaT Keratinocytes JF - Molecular Pharmacology JO - Mol Pharmacol SP - 1429 LP - 1442 DO - 10.1124/mol.108.050609 VL - 74 IS - 5 AU - Michael G. Borland AU - Jennifer E. Foreman AU - Elizabeth E. Girroir AU - Reza Zolfaghari AU - Arun K. Sharma AU - Shantu Amin AU - Frank J. Gonzalez AU - A. Catharine Ross AU - Jeffrey M. Peters Y1 - 2008/11/01 UR - http://molpharm.aspetjournals.org/content/74/5/1429.abstract N2 - Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-β/δ induces terminal differentiation and attenuates cell growth, some studies suggest that PPARβ/δ actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARβ/δ and potentiates cell proliferation by activating PPARβ/δ. The present study examined the effect of ligand activation of PPARβ/δ on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARβ/δ ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARβ/δ ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARβ/δ target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARβ/δ-null primary mouse keratinocytes to determine the specific role of PPARβ/δ in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARβ/δ-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARβ/δ inhibits keratinocyte proliferation through PPARβ/δ-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is mediated by PPARβ/δ-independent mechanisms and is inconsistent with the notion that RA potentiates cell proliferation by activating PPARβ/δ. The American Society for Pharmacology and Experimental Therapeutics ER -