RT Journal Article SR Electronic T1 Mrp1 Localization and Function in Cardiac Mitochondria after Doxorubicin JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1117 OP 1126 DO 10.1124/mol.108.052209 VO 75 IS 5 A1 Paiboon Jungsuwadee A1 Ramaneeya Nithipongvanitch A1 Yumin Chen A1 Terry D. Oberley A1 D. Allan Butterfield A1 Daret K. St. Clair A1 Mary Vore YR 2009 UL http://molpharm.aspetjournals.org/content/75/5/1117.abstract AB Multidrug resistance-associated protein 1 (Mrp1; Abcc1) is expressed in sarcolemma of murine heart, where it probably protects the cardiomyocyte by mediating efflux of endo- and xenobiotics. We used doxorubicin (DOX), a chemotherapeutic drug known to induce oxidative stress and thereby cardiac injury, as a model cardiotoxic compound and observed changes in the Mrp1 expression pattern in cardiac tissue of DOX-versus saline-treated mice. Confocal immunofluorescent and immunogold electron microscopy, together with subcellular fractionation followed by immunoblot analyses and transport measurements, localized functional Mrp1 to mitochondria after DOX. Expressions of Mrp1 in heart homogenate, sarcolemma, and submitochondrial particles (SMP) were increased 1.6-, 2-, and 3-fold, respectively, at 24 h after DOX. Mitochondrial Mrp1 expression was markedly increased 72 h after DOX, whereas transport of Mrp1 substrates in SMP was maximal at 24 h. ATP-dependent transport in SMP occurred into an osmotically sensitive space and was inhibited by the anti-MRP1 antibody QCRL3. Adduction of a 190-kDa protein with the reactive lipid peroxidation product 4-hydroxy-2-nonenal (HNE) was detected in SMP and was maximal at 72 h after DOX; immunoprecipitation confirmed Mrp1-HNE adduction. In vitro, HNE (10 μM) inhibited mitochondrial respiration and transport activity in SMP, suggesting that Mrp1 is adversely affected by oxidative stress. These data demonstrate that after DOX, functional Mrp1 is detected in mitochondria in addition to that in sarcolemma; however, adduction with HNE inhibits Mrp1 activity. Mrp1 may serve to protect the heart by mediating the efflux of toxic products of oxidative stress from mitochondria and cardiomyocytes. The American Society for Pharmacology and Experimental Therapeutics