TY - JOUR T1 - Glycogen Synthase Kinase-3β Is a Functional Modulator of Serotonin-1B Receptors JF - Molecular Pharmacology JO - Mol Pharmacol SP - 974 LP - 986 DO - 10.1124/mol.111.071092 VL - 79 IS - 6 AU - L. Chen AU - W. Zhou AU - P. C. Chen AU - I. Gaisina AU - S. Yang AU - X. Li Y1 - 2011/06/01 UR - http://molpharm.aspetjournals.org/content/79/6/974.abstract N2 - Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase that is involved in neuronal regulation and is a potential pharmacological target of neurological disorders. We found previously that GSK3β selectively interacts with 5-hydroxytryptamine-1B receptors (5-HT1BR) that have important functions in serotonin neurotransmission and behavior. In this study, we provide new information supporting the importance of GSK3β in 5-HT1BR-regulated signaling, physiological function, and behaviors. Using molecular, biochemical, pharmacological, and behavioral approaches, we tested 5-HT1BR's interaction with Giα2 and β-arrestin2 and 5-HT1BR-regulated signaling in cells, serotonin release in mouse cerebral cortical slices, and behaviors in wild-type and β-arrestin2 knockout mice. Molecular ablation of GSK3β and GSK3 inhibitors abolished serotonin-induced change of 5-HT1BR coupling to Giα2 and associated signaling but had no effect on serotonin-induced recruitment of β-arrestin2 to 5-HT1BR. This effect is specific for 5-HT1BR because GSK3 inhibitors did not change the interaction between serotonin 1A receptors and Giα2. Two GSK3 inhibitors, N-(4-methoxybenzyl)-N′-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418) and 3-(5-bromo-1-methyl-1H-indol-3-yl)-4-(benzofuran-3-yl)pyrrole-2,5-dione (BIP-135), efficiently abolished the inhibitory effect of the 5-HT1BR agonist anpirtoline on serotonin release in mouse cerebral cortical slices. GSK3 inhibitors also facilitated the 5-HT1BR agonist anpirtoline-induced behavioral effect in the tail suspension test but spared anpirtoline-induced locomotor activity. These results suggest that GSK3β is a functional selective modulator of 5-HT1BR-regulated signaling, and GSK3 inhibitors fine-tune the physiological and behavioral actions of 5-HT1BR. Future studies may elucidate the significant roles of GSK3 in serotonin neurotransmission and implications of GSK3 inhibitors as functional selective modulators of 5-HT1BR. ER -