PT - JOURNAL ARTICLE AU - Paul J. Kammermeier TI - Functional and Pharmacological Characteristics of Metabotropic Glutamate Receptors 2/4 Heterodimers AID - 10.1124/mol.112.078501 DP - 2012 Sep 01 TA - Molecular Pharmacology PG - 438--447 VI - 82 IP - 3 4099 - http://molpharm.aspetjournals.org/content/82/3/438.short 4100 - http://molpharm.aspetjournals.org/content/82/3/438.full SO - Mol Pharmacol2012 Sep 01; 82 AB - Metabotropic glutamate receptors (mGluRs) were thought until recently to function mainly as stable homodimers, but recent work suggests that heteromerization is possible. Despite the growth in available compounds targeting mGluRs, little is known about the pharmacological profile of mGluR heterodimers. Here, this question was addressed for the mGluR2/4 heterodimer, examined by coexpressing both receptors in isolated sympathetic neurons from the rat superior cervical ganglion (SCG), a native neuronal system with a null mGluR background. Under conditions that favor mGluR2/4 heterodimer formation, activation of the receptor was not evident with the mGluR2-selective agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) or with the mGluR4 selective agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4); however, full activation was apparent when both ligands were applied together, confirming that mGluR dimers require ligand binding in both subunits for full activation. Properties of allosteric modulators were also examined, including the findings that negative allosteric modulators (NAMs) have two binding sites per dimer and that positive allosteric modulators (PAMs) have only a single site per dimer. In SCG neurons, mGluR2/4 dimers were not inhibited by the mGluR2-selective NAM (Z)-1-[2-cycloheptyloxy-2-(2,6-dichlorophenyl)ethenyl]-1H-1,2,4-triazole (Ro 64-5229), supporting the two-site model. Furthermore, application of the mGluR4 selective PAMs N-(4-chloro-3-methoxyphenyl)-2-pyridinecarboxamide (VU0361737) or N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) and combined application of mGluR4 PAMs with the mGluR2 selective PAM biphenyl indanone-A failed to potentiate glutamate responses through mGluR2/4, suggesting that mGluR2/4 heterodimers are not modulatable by PAMs that are currently available.