PT - JOURNAL ARTICLE AU - Wolters, Valerie AU - Krasel, Cornelius AU - Brockmann, Jörg AU - Bünemann, Moritz TI - Influence of G<em>α</em><sub>q</sub> on the Dynamics of M<sub>3</sub>-Acetylcholine Receptor–G-Protein–Coupled Receptor Kinase 2 Interaction<sup><img src="pending:yes" l:ref-type="journal" hwp:journal="molpharm" hwp:volume="87" hwp:issue="1" hwp:article="9" l:sub-ref="inline-graphic-1" l:type="image/*" class="inline-graphic" alt="Graphic"/></sup> AID - 10.1124/mol.114.094722 DP - 2015 Jan 01 TA - Molecular Pharmacology PG - 9--17 VI - 87 IP - 1 4099 - http://molpharm.aspetjournals.org/content/87/1/9.short 4100 - http://molpharm.aspetjournals.org/content/87/1/9.full SO - Mol Pharmacol2015 Jan 01; 87 AB - G-protein–coupled receptor kinase 2 (GRK2) is a serine/threonine kinase with an important function in the desensitization of G-protein–coupled receptors. Based on its ability to bind G-protein βγ subunits as well as activated Gαq subunits, it can be considered as an effector for G-proteins. The recruitment of GRK2 to activated receptors is well known to be mediated by Gβγ together with negatively charged membrane phospholipids. In the current study, we address the role of Gαq on the interaction of GRK2 with activated Gq-protein–coupled receptors. Therefore, we established new Förster resonance energy transfer (FRET)–based assays to study the interaction of GRK2 with the M3-acetylcholine (M3-ACh) receptor as well as Gq-protein subunits with high spatiotemporal resolution in single living human embryonic kidney 293T cells. M3-ACh receptor stimulation with 10 µM acetylcholine resulted in distinct changes in FRET, which reflects interaction of the respective proteins. GRK2 mutants with reduced binding affinity toward Gαq [GRK2(D110A)] and Gβγ [GRK2(R587Q)] were used to determine the specific role of Gq-protein–binding by GRK2. Comparison of absolute FRET amplitudes demonstrated that Gαq enhances the extent and stability of the GRK2–M3-ACh receptor interaction, and that not only Gβγ but also Gαq can target GRK2 to the membrane. This reveals an important role of Gαq in efficient recruitment of GRK2 to M3-ACh receptors. Furthermore, interactions between Gαq and GRK2 were associated with a prolongation of the interaction between GRK2 and the M3-ACh receptor and enhanced arrestin recruitment by these receptors, indicating that Gαq influences signaling and desensitization.