PT - JOURNAL ARTICLE AU - Oh, Jin-Gyo AU - Chin, Young-Won AU - Kim, Sung-Jo AU - Choi, Jong Min AU - Kim, Sang Kyum AU - Kang, Hee Eun AU - Heo, Tae-Hwe TI - Biphasic Effects of Ingenol 3,20-Dibenzoate on the Erythropoietin Receptor: Synergism at Low Doses and Antagonism at High Doses AID - 10.1124/mol.114.097436 DP - 2015 Aug 01 TA - Molecular Pharmacology PG - 392--400 VI - 88 IP - 2 4099 - http://molpharm.aspetjournals.org/content/88/2/392.short 4100 - http://molpharm.aspetjournals.org/content/88/2/392.full SO - Mol Pharmacol2015 Aug 01; 88 AB - Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB’s EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB’s mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions.