RT Journal Article SR Electronic T1 Biphasic Effects of Ingenol 3,20-Dibenzoate on the Erythropoietin Receptor: Synergism at Low Doses and Antagonism at High Doses JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 392 OP 400 DO 10.1124/mol.114.097436 VO 88 IS 2 A1 Oh, Jin-Gyo A1 Chin, Young-Won A1 Kim, Sung-Jo A1 Choi, Jong Min A1 Kim, Sang Kyum A1 Kang, Hee Eun A1 Heo, Tae-Hwe YR 2015 UL http://molpharm.aspetjournals.org/content/88/2/392.abstract AB Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB’s EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB’s mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions.