PT - JOURNAL ARTICLE AU - Philipp Y. Maximov AU - Balkees Abderrahman AU - Yousef M. Hawsawi AU - Yue Chen AU - Charles E. Foulds AU - Antrix Jain AU - Anna Malovannaya AU - Ping Fan AU - Ramona F. Curpan AU - Ross Han AU - Sean W. Fanning AU - Bradley M. Broom AU - Daniela M. Quintana Rincon AU - Jeffery A. Greenland AU - Geoffrey L. Greene AU - V. Craig Jordan TI - The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells AID - 10.1124/mol.120.119776 DP - 2020 Jul 01 TA - Molecular Pharmacology PG - 24--37 VI - 98 IP - 1 4099 - http://molpharm.aspetjournals.org/content/98/1/24.short 4100 - http://molpharm.aspetjournals.org/content/98/1/24.full SO - Mol Pharmacol2020 Jul 01; 98 AB - High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens—planar [17β-estradiol (E2)] and angular triphenylethylene (TPE) derivatives—we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E2 the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E2-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E2. The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells.SIGNIFICANCE STATEMENT In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor’s ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.