PT - JOURNAL ARTICLE AU - Puig, Stephanie AU - Barker, Katherine E AU - Szott, Shelby R AU - Kann, Peter T AU - Morris, Jeffrey S AU - Gutstein, Howard B TI - Spinal opioid tolerance depends upon platelet-derived growth factor receptor-β signaling, not mu-opioid receptor internalization AID - 10.1124/mol.120.119552 DP - 2020 Jan 01 TA - Molecular Pharmacology PG - mol.120.119552 4099 - http://molpharm.aspetjournals.org/content/early/2020/07/27/mol.120.119552.short 4100 - http://molpharm.aspetjournals.org/content/early/2020/07/27/mol.120.119552.full AB - Opioids are some of the most potent analgesics available. However, their effectiveness is limited by the development of analgesic tolerance. Traditionally, tolerance was thought to occur by termination of mu-opioid receptor (MOR) receptor signaling via desensitization and internalization. Contradictory findings led to a more recent proposal that sustained MOR signaling caused analgesic tolerance. However, this view has also been called into question. We recently discovered that the platelet-derived growth factor receptor beta (PDGFR-β) signaling system is both necessary and sufficient to cause opioid tolerance. We therefore propose a completely new hypothesis, that opioid tolerance is mediated by selective cellular signals and is independent of MOR trafficking. To test this hypothesis, we developed an automated software-based method to perform unbiased analyses of opioid-induced MOR internalization in the rat substantia gelatinosa. We induced tolerance with either morphine, which did not cause MOR internalization, or fentanyl, which did. We also blocked tolerance by administering morphine or fentanyl with the PDGFR-β inhibitor imatinib. We found that imatinib blocked tolerance without altering receptor internalization induced by either morphine or fentanyl. We also showed that imatinib blocked tolerance to other clinically used opioids. Our findings indicate that opioid tolerance is not dependent upon MOR trafficking and support the novel hypothesis that opioid tolerance is mediated by intracellular signaling that can be selectively targeted. This suggests the exciting possibility that undesirable opioid side effects can be selectively eliminated, dramatically improving the safety and efficacy of opioids.SIGNIFICANCE STATEMENT Classically, it was thought that analgesic tolerance to opioids was caused by desensitization and internalization of mu opioid receptors (MORs). More recently, it was proposed that sustained, rather than reduced MOR signaling caused tolerance. Here we present conclusive evidence that opioid tolerance occurs independently of MOR internalization, and is selectively mediated by platelet-derived growth factor receptor signaling. This novel hypothesis suggests that dangerous opioid side effects can be selectively targeted and blocked, improving the safety and efficacy of opioids.