Identification of AICP as a GluN2C-selective NMDA receptor superagonist at the GluN1 glycine site

Maja Jessen, Kristen Frederiksen, Feng Yi, Rasmus P. Clausen, Kasper B. Hansen, Hans Bräuner-Osborne, Paul Kilburn, and Anders Damholt.

Department of Molecular Screening, H. Lundbeck A/S, Valby, Denmark (M.J., K.F., A.D.); Present Address: Clinical Development, Chr. Hansen A/S, Hørsholm, Denmark (A.D.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (M.J., R.P.C., H.B.-O.); Department of Medicinal Chemistry 1, H. Lundbeck A/S, Valby, Denmark (P.K.); and Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA (F.Y., K.B.H.)

MOLECULAR PHARMACOLOGY

SUPPLEMENTAL DATA

	GluN1/2A						GluN1/2B	n _H N 1.1 6 1.1 9 1.1 5		
	EC50 [μM]	$\begin{array}{l} pEC_{50} \pm \\ SEM \end{array}$	Rel. I _{max} (%)	$n_{\rm H}$	Ν	EC50 [μM]	$\begin{array}{l} pEC_{50} \pm \\ SEM \end{array}$	Rel. I _{max} (%)	$n_{\rm H}$	N
AICP (+ $30 \mu M Glu$)	0.048	7.33 ± 0.03	$\textbf{83}\pm2$	1.2	12	0.014	7.88 ± 0.06	${\bf 7}\pm 0$	1.1	6
AICP (+ 100 µM Glu)	0.041	7.39 ± 0.02	$\textbf{88}\pm2$	1.2	16	0.013	7.90 ± 0.03	${\bf 8}\pm 0$	1.1	9
AICP (+ 300 µM Glu)	0.043	7.37 ± 0.01	$\bm{95}\pm1^\dagger$	1.2	8	0.016	7.80 ± 0.05	${\bf 9}\pm1^\dagger$	1.1	5
	GluN1/2C					GluN1/2D				
	EC50 [μM]	$\begin{array}{l} pEC_{50} \pm \\ SEM \end{array}$	Rel. I _{max} (%)	nH	Ν	EC50 [μM]	$\begin{array}{c} pEC_{50} \pm \\ SEM \end{array}$	Rel. I _{max} (%)	n _H	Ν
AICP (+ $30 \mu M Glu$)	0.0004	9.37 ± 0.02	310 ± 6	1.0	6	0.032	7.50 ± 0.05	22 ± 1	1.6	6
AICP (+ 100 µM Glu)	0.0010	$9.04\pm0.04^{\dagger}$	$\textbf{340} \pm 12$	1.1	14	0.029	7.54 ± 0.04	${\bf 28}\pm2^{\dagger}$	1.4	5
AICP (+ $300 \ \mu M \ Glu$)	0.0010	$9.03\pm0.03^\dagger$	$\textbf{338} \pm 16$	0.9	3	0.033	7.48 ± 0.03	25 ± 1	1.5	6

Supplemental Table 1. Influence of glutamate concentrations on AICP concentration-response data at rat

NMDA receptor subtypes.

Concentration-response data for AICP at recombinant rat NMDA receptor subtypes measured using twoelectrode voltage-clamp electrophysiology in the presence of 30, 100, or 300 μ M glutamate (Glu). Relative (Rel.) I_{max} is the fitted maximal response relative to the maximal response to glycine, n_H is the Hill coefficient, and *N* is the number of oocytes. [†] significantly different from AICP data at the same receptor in 30 μ M glutamate (p < 0.05, one-way ANOVA with Tukey's post-test). **Supplemental Table 2.** Concentration-response data for AICP and DCS at wild type and mutant rat GluN1/2A and GluN1/2C receptors.

Receptor	Compound	EC ₅₀ [μM]	$\text{pEC}_{50}\pm\text{SEM}$	n _H	N	Fold increase in EC_{50} compared to wild type	
	AICP	0.036	7.49 ± 0.05	1.3	29	-	
GluN1/2A	DCS	18	4.75 ± 0.01	1.6	13	-	
C_{1} N1/E494A)/2A	AICP	13	4.98 ± 0.14	1.5	5	360	
GluN1(F484A)/2A	DCS	> 10 mM	-	-	3	-	
$C_{\rm hy}N1(D522A)/2A$	AICP	4.9	5.38 ± 0.12	1.7	5	140	
GluN1(R523A)/2A	DCS	880	3.06 ± 0.04	1.7	4	49	
C_{1} N1(T5101)/2A	AICP	16	4.82 ± 0.05	1.6	8	440	
GluN1(T518L)/2A	DCS	N.R.	N.R.	N.R.	4	-	
	AICP	N.R.	N.R.	N.R.	6	-	
GluN1(F484A/T518L)/2A	DCS	N.R.	N.R.	N.R.	4	-	
	AICP	0.0010	9.04 ± 0.03	1.0	17	-	
GluN1/2C	DCS	2.8	5.55 ± 0.01	1.5	18	-	
$C \sim N1/E494A / 2C$	AICP	9.7	5.01 ± 0.01	1.6	6	9700	
GluN1(F484A)/2C	DCS	> 10 mM	-	-	4	-	
CL-N1/D522A)/2C	AICP	3.6	5.44 ± 0.01	1.6	6	3600	
GluN1(R523A)/2C	DCS	250	3.61 ± 0.01	1.6	5	89	
C_{1} N1(T5191)/2C	AICP	1.2	5.93 ± 0.01	1.8	8	1200	
GluN1(T518L)/2C	DCS	> 10 mM	-	-	4	-	
Cl-N1/E494A/T5191\/2C	AICP	N.R.	N.R.	N.R.	6	-	
GluN1(F484A/T518L)/2C	DCS	N.R.	N.R.	N.R.	4	-	

Concentration-response data for AICP and DCS at recombinant wild type or mutated rat GluN1/2A and GluN1/2C receptors measured using two-electrode voltage-clamp electrophysiology in the presence of 100-300 μ M glutamate. Relative (Rel.) I_{max} is the fitted maximal response, n_H is the Hill coefficient, and *N* is the number of oocytes. N.R. indicates < 10% response to 30-100 μ M AICP, 30 mM DCS, or 30 mM glycine, and - indicates not determined.

Supplemental Table 3. Concentration-response data for AICP at human NMDA receptor subtypes in the presence of glycine.

Receptor	Glycine [µM]	EC ₅₀ [μM] / IC ₅₀ [μM]	$\begin{array}{c} pEC_{50}\pm SEM\\ /\ pIC_{50}\pm SEM \end{array}$	Rel. I _{max} (%)	Rel. I _{min} (%)	n _H	N
GluN1/2A	0.6	0.027	7.56 ± 0.07	99 ± 2	29 ± 3	1.2	5
	100	ND	ND	$102 \pm 2^{\#}$	$95 \pm 3^{\#}$	ND	10
GluN1/2B	0.6	0.013	7.88 ± 0.18	59 ± 5	14 ± 2	-0.9	6
	100	5.1	$5.29\pm0.11^\dagger$	93 ± 2	20 ± 6	-1.1	5-6
GluN1/2C 0.6 100	0.013	7.88 ± 0.07	337 ± 8	$\textbf{60} \pm 12$	1.2	5-6	
	100	1.4	$5.85\pm0.10^\dagger$	$\textbf{321}\pm20$	105 ± 4	1.1	4-6
GluN1/2D	0.6	1.1	5.97 ± 0.07	92 ± 2	45 ± 3	-2.5	5-8
	100	42	$4.38\pm0.55^\dagger$	104 ± 2	48 ± 37	-1.3	5-8

Concentration-response data for AICP at recombinant human NMDA receptor subtypes measured using two-electrode voltage-clamp electrophysiology in the presence of 100 μ M glutamate and 100 μ M or 0.6 μ M glycine. Relative (Rel.) I_{max} and Rel. I_{min} are the fitted maximal and minimal responses relative to the maximal response to glycine, n_H is the Hill coefficient, and *N* is the number of oocytes. Negative n_H indicates inhibition by AICP, ND indicates not determined, and # indicates that Rel. I_{max} and Rel. I_{min} are determined as the average responses to the lowest and highest concentrations of AICP, respectively, relative to the maximal response to glycine.[†] significantly different from pEC₅₀ or pIC₅₀ at the same receptor in 0.6 μ M glycine (p < 0.05, one-way ANOVA with Tukey's post-test).

Supplemental Table 4. Concentration-response data for AICP and DCS at mutant and chimeric GluN1/2A, GluN1/2B, and GluN1/2C receptors.

Receptor	Compound	EC50 [µM]	$pEC_{50}\pm SEM$	Rel. Imax (%)	$n_{\rm H}$	Ν
GluN1/2A	AICP	0.036	7.49 ± 0.05	92 ± 2	1.3	29
	DCS	18	4.75 ± 0.01	91 ± 1	1.6	13
	AICP	0.014	7.86 ± 0.03	9 ± 0	1.1	14
GluN1/2B	DCS	8.3	5.08 ± 0.01	61 ± 0	1.4	12
GluN1/2C	AICP	0.0010	9.04 ± 0.03	339 ± 10	1.0	17
	DCS	2.8	5.55 ± 0.01	197 ± 2	1.5	18
GluN1/2B E790Q	AICP	0.0050	8.31 ± 0.03	9 ± 1	1.7	11
	DCS	11	4.97 ± 0.01	81 ± 0	1.4	9
GluN1/2C Q800E	AICP	0.012	7.93 ± 0.02	$\textbf{607} \pm 22$	1.3	9
	DCS	4.4	5.35 ± 0.01	143 ± 3	1.5	8
GluN1/2A-(2C ATD)	AICP	0.025	7.60 ± 0.02	97 ± 5	1.2	6
	DCS	33	4.48 ± 0.03	75 ± 2	1.5	6
GluN1/2C-(2A ATD)	AICP	0.0013	8.89 ± 0.04	98 ± 7	0.8	6
	DCS	5.6	5.26 ± 0.03	104 ± 0	1.4	7

Concentration-response data for AICP and DCS at recombinant rat NMDA receptors measured using twoelectrode voltage-clamp electrophysiology in the presence of 100-300 μ M glutamate. Relative (Rel.) I_{max} is the fitted maximal response relative to the maximal response to glycine, n_H is the Hill coefficient, and *N* is the number of oocytes.