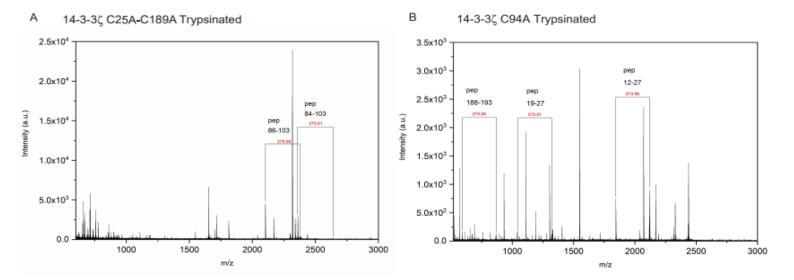
Supplemental data for manuscript # MOLPHARM-AR-2020-000184

Cysteine modification by ebselen reduces the stability and cellular levels of 14-3-3 proteins

Kai Waløen, Jung K.C. Kunwar, Elisa D. Vecchia, Sunil Pandey, Norbert Gasparik, Anne Døskeland, Sudarshan Patil, Rune Kleppe, Jozef Hritz, William H.J. Norton, Aurora Martinez, and Jan Haavik

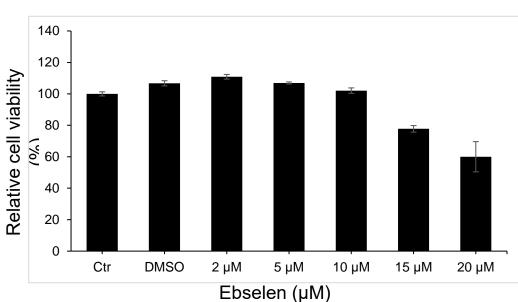

ID	Drug name	Formula	Therapeutic class/	ΔT_m at 400
			therapeutic effect	μΜ
				(∘C)
1	Fulvestrant*	CH ₃ OH	Endocrinology/	-23.6
			Antineoplastic	
		HO F		
2	Cefoxitin	Г, ОН ₃ С _{О Н}	Metabolism/	-17.3
			Antibacterial	
3	Thimerosal		Infectiology/	-11.7
5	minerosa		Antiseptic	-11.7
4	Rabeprazole ¹		Metabolism/	-11.4
		N, OH,C, O	Antiulcer	
5	Mercaptopurine		Immunology/	-10.8
		Ň	Immunosuppressant	
		N S		
6	Thioguanosine		Metabolism/ Antineoplastic	-9.2
		HO OH NYN NH ₂		
7	Tenatoprazole ¹		Metabolism/	-8.6
			Antiulcer	
		н,с∕ ≫		
8	Altrenogest*	H ₃ C ^{OH}	Endocrinology/	-8.4
			Progestogen	
		0 H		
9	Nifedipine ²	H ₁ C- ^O H ₁ C ⁻ CH ₃	Cardiovascular/	-7.2
			Antianginal	
10	Pinaverium ²	ис ^{СН} ,	Neuromuscular/	-6.7
		H ₃ C CH ₃ H	Antispastic	
		ó, (,) CH₃ o		
11	Ebselen		Metabolism/	-7.0
		N-Se	Anti-inflammatory	
		0 _/		

12	Lansoprazole ¹	$ \begin{array}{c} & 0 & N \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	Metabolism/ Antiulcer	-6.0
13	Cefaclor		Infectiology/ Antibacterial	-6.0
14	Nisoldipine ²	$H_{3}C \sim O$ $H_{3}C \sim N$ $H_{3}C \sim O$ $H_{3}C \sim O$ $H_{3}C \sim O$ $H_{3}C \sim O$ $H_{3}C \sim O$ CH_{3} CH_{3}	Cardiovascular/ Antianginal	-5.8
15	Carbenoxolone ^{*,3}		Metabolism/ Antiulcer	-5.1

Supplemental Table 1. Small-molecule drug hits obtained from the primary DSF screen. The midpoint melting temperature (T_m) of 14-3-3 ζ with 4% DMSO was 61.1 ± 0.5°C, and 15 hits that caused I $\Delta T_m I \ge 10 \times SD$ (5.1°C), used as a cut-off value, were selected for concentration dependent studies. Based on its consistent concentration-dependent effect and reduced toxicity, ebselen was selected for further studies. *Steroids. ¹Proton pump inhibitor. ²Calcium channel blocker ³Probable calcium channel blocker

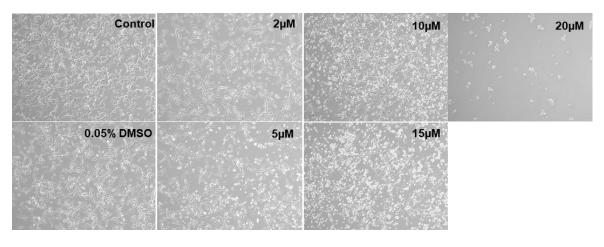
<pre>1 epsilon -MDDREDLUYQANLAEQAERTDEMA2NKVACMOVELTVEENNLLSVAYKNVIGARRASHRIISIEQKENKGOEDKL 2 sigma -MURRQLUVQANLAEQAERTDEMAANKVACHELGELS ZEENLLSVAYKNVUGARRASHRVISIEQKENKGOEDKL 4 eta -MGDRQLLQRARLAEQAERTDEMAANKVATELNEPLSNEENNLLSVAYKNVUGARRASHRVISIEQKENKGOEKKI 4 eta -MGDRQLLQRARLAEQAERTDEMAANKVATELNEPLSNEENNLLSVAYKNVUGARRASHRVISIEQKTSADGNEKKI 5 theta -MEKTELIQKAKLAEQAERTDEMAANKVATELNEPLSNEENNLLSVAYKNVUGARRASHRVISIEQKTSADGNEKKI 6 beta MTMEKSELUQKAKLAEQAERTDEMAANKVATEQGHELSNEENNLLSVAYKNVUGARRASHRVISIEQKTERNEKKQ 1 . 1 . 1</pre>			1	[80
3 gamma -MVDREQLVQKARLABQAERYDDMAAAMKAVTELNEPLSNEERNLLSVATKNVVQABRSSMRVISSIEQKTAADQREKKI 4 eta -MEXTELIQKARLABQAERYDDMASAMKAVTELNEPLSNEERNLLSVATKNVVQABRSSMRVISSIEQKT-DTSDKKL 6 beta -MEXTELIQKARLABQAERYDDMAAMKAVTEQGHELSNEERNLLSVATKNVVQABRSSMRVISSIEQKT-DTSDKKL 6 beta MINDKSELVQKARLABQAERYDDMAAMKAVTEQGHELSNEERNLLSVATKNVVQABRSSMRVISSIEQKT-DSNKKL 7 zeta -MEXTELIQKARLABQAERYDDMAAMKAVTEQGHELSNEERNLLSVATKNVVQABRSSMRVISSIEQKT-EBNEKKQ 1 1	1	epsilon		-MDDREDLVYQAKLAEQAERYDEMVESMKKVAGMDVELTVEERNLLSVAYKNVIGARRASWRIISSIEQKEENKGGEDKL	
<pre>4 etaMGDREQLLQRARLABQAERYDDMASAMKAVTELNEPLSNEDRNLLSVAYKNVVGARRSSNRVISSIBQKTDTSDKKL 5 thetaMEKTELIQKAKLABQAERYDDMASAMKAVTEQGAELSNEERNLLSVAYKNVVGARRSSNRVISSIBQKTDTSDKKL 6 betaMEKNELVQKAKLABQAERYDDMAAMKAVTEQGAELSNEERNLLSVAYKNVVGARRSSNRVISSIBQKTEXNEKKQ 7 zetaMDKNELVQKAKLABQAERYDDMAAMKAVTEQGAELSNEERNLLSVAYKNVVGARRSSNRVVSSIBQKTEXNEKKQ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	2	sigma		MERASLIQKAKLAEQAERYEDMAAFMKGAVEKGEELS <mark>C</mark> EERNLLSVAYKNVVGGQRAAWRVLSSIEQKSNEEGSEEKG	
S theta MEKTELIQKAKLAEQAERYDDMATOMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAMRVISSIEQKTDISDKKL 6 beta MEKTELIQKAKLAEQAERYDDMAAMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAMRVISSIEQKTERNEKKQ 7 zeta MEKNELVQKAKLAEQAERYDDMAAMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAMRVISSIEQKTERNEKKQ 1 1 . 1 1 1 . 1 1 1 . 1 2 sigma 1 . 1 3 gamma EMVRAYREKIEKELEAVQODVLSLLDNYLIKMGSETQYESKVFYIKMKGDYRYLAEVATGGNDRKRAAENSUVAYKAASD 9 devrayrekieketeavoduvLsLDSKLIKEGEVVDESKVFYIKMKGDYRYLAEVATGGRAFKNVVESEKASVARAB 2 sigma QUIKDYREKVESELASIGTTVLELLDKYLIKMGDYRYLAEVATGGNDRKRATVVESEKKNSVVEAREBAAYKEAFE 5 theta QUIKDYREKVESELASIGTTVLELLDKYLIKMKGDYRYLAEVAGGDRKQTIDNSQQAYQEAFE 6 beta QUKEYREKIEAELQDIONDVLELLDKYLIPNATQESKVFYLKMKGDYRYLAEVAGDDKKGIVDSQQAYQEAFE 1 2 . 2 eta QUAREYREKIEAELQDIONDVLELLDKYLIPNATQESKVFYLKMKGDYRYLAEVAGDDKKGIVDSQQAYQEAFE 1 2 . . 2 sigma ISKKEMPTNPIKIETELDIONDVLELLDKYLIPNATQESKVFYLKMKGDYRYLAEVAGDKKGIVDSQQAYQEAFE 2 ieta IAMTELPPTHPIRIGLALNPSVYYELIANPACHLAKAAFDDAIAELDTINEDSYKDSTLIMQLLRNNLTMYSDQD 3 gamma ISKKEMPTNPIRIGLALNPSVYYELIANSPEAA	3	gamma		-MVDREQLVQKARLAEQAERYDDMAAAMKNVTELNEPLSNEERNLLSVAYKNVVGARRSSWRVISSIEQKTSADGNEKKI	
6 beta MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSNRVISSIEQKTERNEKKQ 7 zeta MDKNELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSNRVVSSIEQKTEGAEKKQ 1 1 1 . 160 1 1 . 1 . 160 1 1 . . 160 1 1 . . 160 1 1 . . 160 1 1 . . 160 1 1 . . 160 1 1 . . 160 1 1 . . 160 2 . . . 160 1 . 1 . . 160 2 160 3 gamma EMVRAYREKIEKELETVONDULSLLOKYLINAGOTYKYLLAVAGDYRYLAEVAGEDRKGINSVESEKAYEANKAPE 240 1 . 2 . . 240 1 . 2 . . .	4	eta		-MGDREQLLQRARLAEQAERYDDMASAMKAVTELNEPLSNEDRNLLSVAYKNVVGARRSSWRVISSIEQKTMADGNEKKL	
7 zeta MCKNELVQKAKLAEQAERYDDMAACMKSVTEQGAELSNEERNLLSVAYKNVVGARRSSWRVVSSIEQKTEGAEKKQ 1 1	5	theta		MEKTELIQKAKLAEQAERYDDMATCMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAWRVISSIEQKTDTSDKKL	
1 .1 .1	6	beta		MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSWRVISSIEQKTERNEKKQ	
<pre>1 epsilon KMIREYRQMVETELKLIGCDILDVLDKHLIPAANTGESKVFYYKMKGDYHRYLAEPATGNDRKEAAENSLVAYKAASD 2 sigma PEVREYREKVETELQGVCDTVLGLLDSHLIKERGDAESRVFYLKMKGDYTRYLAEVATGDDKKRIIDSARSATQEAMD 3 gamma EMVRAYREKIEKELEAVCODVLSLLDNYLIKNGSETQYESKVFYLKMKGDYYRYLAEVATGDDKRAITUNESSEKAYSEAHE 4 eta EKVKAYREKIEKELETVCNDVLSLLDKYLINNCNDFQTESKVFYLKMKGDYTRYLAEVATGDRKATUVESSEKAYSEAHE 5 theta QLIKDYREKVESELRSICTTVLELLDKYLIANATNPESKVFYLKMKGDYTRYLAEVACGDDRKQTIDNSQGAYQEAFD 6 beta QMGREYREKIETELRDICNDVLELLDKYLIPNATQFSKVFYLKMKGDYFRYLAEVACGDDRKQTVSNSQQAYQEAFE 7 zeta QMAREYREKIETELRDICNDVLELLDKYLIPNASQAESKVFYLKMKGDYTRYLAEVACGDDRKQTVSNSQQAYQEAFE 2 sigma 1</pre>	7	zeta		MDKNELVQKAKLAEQAERYDDMAACMKSVTEQGAELSNEERNLLSVAYKNVVGARRSSWRVVSSIEQKTEGAEKKQ	
<pre>1 epsilon KMIREYRQMVETELKLIGCDILDVLDKHLIPAANTGESKVFYYKMKGDYHRYLAEPATGNDRKEAAENSLVAYKAASD 2 sigma PEVREYREKVETELQGVCDTVLGLLDSHLIKERGDAESRVFYLKMKGDYTRYLAEVATGDDKKRIIDSARSATQEAMD 3 gamma EMVRAYREKIEKELEAVCODVLSLLDNYLIKNGSETQYESKVFYLKMKGDYYRYLAEVATGDDKRAITUNESSEKAYSEAHE 4 eta EKVKAYREKIEKELETVCNDVLSLLDKYLINNCNDFQTESKVFYLKMKGDYTRYLAEVATGDRKATUVESSEKAYSEAHE 5 theta QLIKDYREKVESELRSICTTVLELLDKYLIANATNPESKVFYLKMKGDYTRYLAEVACGDDRKQTIDNSQGAYQEAFD 6 beta QMGREYREKIETELRDICNDVLELLDKYLIPNATQFSKVFYLKMKGDYFRYLAEVACGDDRKQTVSNSQQAYQEAFE 7 zeta QMAREYREKIETELRDICNDVLELLDKYLIPNASQAESKVFYLKMKGDYTRYLAEVACGDDRKQTVSNSQQAYQEAFE 2 sigma 1</pre>					
2 sigma PEVREYREKVETELOGVCDTVLGLLDSHLIKEAGDAESRVFYLKMKGDYYRYLAEVATGDDKKRIIDSARSAYQEAMD 3 gamma EMVRATREKIEKELEAVCODVLSLLDNYLIKMCSETOYESKVFYLKMKGDYYRYLAEVATGERRATVVESSEKAYSEAHE 4 eta EKVKAYREKIEKELETVCNDVLSLLDKFLIKMCNDFOYESKVFYLKMKGDYYRYLAEVASGEKKNSVVEASEAAYKEAFE 5 theta QLIKOYREKVESELRSICTTVLELLDKYLIKMCNDFOYESKVFYLKMKGDYFRYLAEVASGEKKNSVVEASEAAYKEAFE 6 beta QMGKEYREKIEAELQDICNDVLSLLDKFLIKMCNDFOYESKVFYLKMKGDYFRYLAEVASGEKKNSVVEASEAAYKEAFE 7 zeta QMGKEYREKIEAELQDICNDVLSLLEKFLIPNATOPESKVFYLKMKGDYFRYLSEVASGDNKOTTVSNSQQAYQEAFE 1 epsilon 2			1	. 1	160
3 gamma EMVRAYREK IEKELEAVCODVLSLLDNYL I KNČSETOYESKVFYLKMKGDYYRYLAEVATGEKRATVVESSEKAYSEAHE 4 eta EKVKAYREK IEKELETVCNOVLSLLDKYL IKNČNDFOYESKVFYLKMKGDYRYLAEVAGGEKRATVVESSEKAYSEAHE 5 theta QLIKDYREKVESELRS I CTTVLELLDKYL IKNČNDFOYESKVFYLKMKGDYRYLAEVAGGEDRKOT IDNSQGAYQEAPE 6 beta QMGKEYREK IEAELQDI CNOVLELLDKYL INATNPESKVFYLKMKGDYRYLAEVAGGDDRKOT IDNSQGAYQEAPE 7 zeta QMGKEYREK IEAELQDI CNOVLELLDKYL IPNATQPESKVFYLKMKGDYRYLAEVAAGDDKKGI VDOSQAYQEAPE 1	1	epsilon		KMIREYR@MVETELKLICCDILDVLDKHLIPAANTGESKVFYYKMKGDYHRYLAEPATGNDRKEAAENSLVAYKAASD	
<pre>4 eta EKVKAYREKIEKELETVCNDVLSLLDKPLIKNCNDPQYESKVPYLKMKGDYYRYLAEVASGEKKNSVVEASEAAYKEAFE 5 theta OLIKDYREKVESELRSIGTTVLELLDKYLIANATNPESKVPYLKMKGDYFRYLAEVASGEDRKQTIDNSQGAYQEAFE 6 beta OMGKEYREKIEAELQDICNDVLSLLEKPLIPNASQAESKVPYLKMKGDYFRYLAEVASGDDKKGIVDQSQQAYQEAFE 7 zeta 0 MAREYREKIETELRDICNDVLSLLEKPLIPNASQAESKVPYLKMKGDYYRYLAEVASGDDKKGIVDQSQQAYQEAFE 1</pre>	2	sigma		PEVREYREKVETELQGVCDTVLGLLDSHLIKEAGDAESRVFYLKMKGDYYRYLAEVATGDDKKRIIDSARSAYQEAMD	
5 theta QLIKDYREKVESELRSIGTTVLELLDKYLIANATNPESKVFYLKMKGDYFRYLAEVAGGDDRKQTIDNSQGAYQEAFD 6 beta QMGKEYREKIEAELQDICNDVLELLDKYLIPNATQPESKVFYLKMKGDYFRYLAEVAGDDRKQTIDNSQQAYQEAFE 7 zeta QMAREYREKIETELRDICNDVLELLDKYLIPNASQAESKVFYLKMKGDYFRYLAEVAGDDRKQTIDNSQQAYQEAFE 1 .	3	gamma		emvrayrekiekeleav <mark>o</mark> odvlslldnylikn <mark>o</mark> setoyeskvfylkmkgdyyrylaevatgekratvvessekayseahe	
6 beta 7 zeta QMGREYREK I BAELQDI CNDVLELLDKYLI I PNATQPESKVFYI KMKGDYFRYLSEVASGDNKQTTVSNSQQAYQEAFE 7 zeta QMAREYREK I BELRDI CNDVLSLLEKFLI I PNASQAESKVFYI KMKGDYFRYLSEVASGDNKQTTVSNSQQAYQEAFE 1	4	eta		EKVKAYREKIEKELETV <mark>C</mark> NDVLSLLDKFLIKN <mark>C</mark> NDFQYESKVFYLKMKGDYYRYLAEVASGEKKNSVVEASEAAYKEAFE	
7 zeta QMAREYREKIETELRDICADVLSLLEKFLIPNASQAESKVFYLKMKGDYYRYLAEVAAGDDKKGIVDQSQQAYQEAFE 1	5	theta		QLIKDYREKVESELRSI <mark>C</mark> TTVLELLDKYLIANATNPESKVFYLKMKGDYFRYLAEVA <mark>C</mark> GDDRKQTIDNSQGAYQEAFD	
1	6	beta		QMGKEYREKIEAELQDI <mark>C</mark> NDVLELLDKYLIPNATQPESKVFYLKMKGDYFRYLSEVASGDNKQTTVSNSQQAYQEAFE	
1 epsilon IAMTELPPTHPIRLGLALNFSVFYYEILNSPDRACKLAKAAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQG 2 sigma ISKEMPPTNPIRLGLALNFSVFYYEILNSPDRACKLAKAAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQG 3 gamma ISKEMQPTHPIRLGLALNFSVFYYEIONAPEQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 4 eta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPEQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPEQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 6 beta ISKKEMQPTHPIRLGLALNFSVFYYEINNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDAGG 7 zeta ISKKEMQPTHPIRLGLALNFSVFYYEINNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECONN	7	zeta		QMAREYREK IETELRD I <mark>C</mark> NDVLSLLEKFL I PNASQAESKVFYLKMKGDYYRYLAEVAAGDDKKG I VDQSQQAYQEAFE	
1 epsilon IAMTELPPTHPIRLGLALNFSVFYYEILNSPDRACKLAKAAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQG 2 sigma ISKEMPPTNPIRLGLALNFSVFYYEILNSPDRACKLAKAAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQG 3 gamma ISKEMPPTNPIRLGLALNFSVFYYEIONAPPQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 4 eta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPPQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPPQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQD 6 beta ISKKEMQPTHPIRLGLALNFSVFYYEINNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDSAG 7 zeta ISKKEMQPTHPIRLGLALNFSVFYYEINNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECONN					
2 sigma ISKKEMPPTNPIRLGLALNFSVFHYEIANSPEEAISLAKTTFDEAMADLHTLSEDSYKDSTLIMQLLRDNLTLWTADNAG 3 gamma ISKEMMQPTHPIRLGLALNFSVFHYEIQNAPEQACHLAKTAFDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTADNAG 4 eta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPEQACHLAKTAFDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKEMQPTHPIRLGLALNFSVFYYEIQNAPEQACHLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDAGG 7 zeta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEESYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECON			1		240
3 gamma ISKEHMQPTHPIRLGLALNYSVPYYEIQNAPEQACHLAKTAFDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 4 eta ISKEMQPTHPIRLGLALNYSVPYYEIQNAPEQACLLAKQAPDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKKEMQPTHPIRLGLALNYSVPYYEIQNAPEQACLLAKQAPDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 6 beta ISKKEMQPTHPIRLGLALNYSVPYYEILNNPELACTLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDSAG 7 zeta ISKKEMQPTHPIRLGLALNYSVPYYEILNSPEKACSLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 :] 258 2 sigma EEGGEAPQEPQS 3 gamma DDGGEGNKEALQDVEDENQ 4 eta EEAGEGN 5 theta EEGGEAPQEPQS 6 beta DEGDAGEGEN	1				
4 eta ISKEQMOPTHPIRLGLALNFSVFYYEIQNAPEQACLLAKQAFDDAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDQQD 5 theta ISKKEMQPTHPIRLGLALNFSVFYYEILNNPELACTLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDSAG 6 beta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEESYKDSTLIMQLLRDNLTLWTSDSAG 7 zeta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEESYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGEGNN	2				
5 theta ISKKEMQPTHPIRLGLALNFSVFYYEILNNPELACTLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDSAG 6 beta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEDSYKDSTLIMQLLRDNLTLWTSDSAG 7 zeta ISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEESYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECONN	3	-			
6 beta ISKKEMQPTHFIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTINEESYKDSTLINQLLRDNLTLWTSENQG 7 zeta ISKKEMQPTHFIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTLSEESYKDSTLINQLLRDNLTLWTSENQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECON	4				
7 zeta ISKKEMQPTHPIRLGLALNPSVFYYEILNSPEKACSLAKTAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDTQG 1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGEGNN 4 eta EEGGAAPGEPQ	5			·····	
1 :] 258 1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGEGNN 4 eta EEGCAAEGAEN 5 theta EECDAAEGAEN	6			• • • • • • • • • • • • • • • • • • • •	
1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECNN 4 eta EEAGEGN 5 theta EECDAREGAEN 6 beta DEGDAGEGEN	7	zeta		I SKKEMQPTHPIRLGLALNPSVPYYEI LNSPEKA <mark>C</mark> SLAKTAFDEA I AELDTLSEESYKDSTLIM <u>O</u> LLRDNLTLWTSDTQG	
1 epsilon DGEEQNKEALQDVEDENQ 2 sigma EEGGEAPQEPQS 3 gamma DDGGECNN 4 eta EEAGEGN 5 theta EECDAAEGAEN 6 beta DEGDAGEGEN					
2 sigma EEGGEAPQEPQS 3 gamma DDGGEGNN 4 eta EEGGEAPQEPQS 5 theta EECDAREGAEN 6 beta DEGDAGEGEN			1		
3 gamma DDGGEGNN 4 eta EEAGEGN 5 theta EECDAAEGAEN 6 beta DEGDAGEGEN	-	*			
4 eta EEAGEGN 5 theta EECDAAEGAEN 6 beta DEGDAGEGEN	2				
5 theta EECDARGAEN	3	-			
6 beta DEGDAGEGEN	1				
	6				
	7				
		2004		DERENGOUGH	

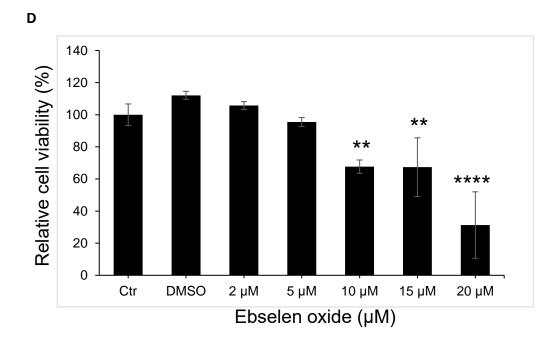
Supplemental Figure S1. Amino acid sequences of the seven isoforms of 14-3-3 are presented. The cysteine residues are highlighted in yellow.


Supplemental Figure S2. MALDI-TOF MS/MS peptide analysis of trypsin digested 1433ζ mutant constructs. a) 1433ζ-C25A-C189A and b) 1433ζ-C94A, after ebselen treatment. Peptides containing cysteines in tagged and untagged form (peptides with a mass shift of 275 Da) are denoted. In a) the figure shows two peptides involving ebselen tagging of C94 in very small amounts. In b) the figure shows a peptide involving C189 and two peptides involving C25.

4

Supplementary Figure S3. Viability of SHSY5Y cells treated with increasing concentration of ebselen and ebselen oxide. A Cell Titer-Blue assay was performed to examine cell viability of SHSY5Y cells treated with increasing concentration of ebselen and ebselen oxide. The cells were plated in 96-well plates at the density of 25000 cells per well and 5 h later were treated with different concentration of ebselen, ebselen oxide and DMSO (0.05%). Cells were then incubated for 16 h and then 20 μ L of Cell Titre Blue reagent was added to each well. The plates were incubated for 2hrs before the fluorescence (λ =590) was measured with Victor 3 1420 Multilabel counter plate reader. A, Cell images using ebselen, B, relative cell viability using ebselen, C Cell images using ebselen oxide D, relative cell viability with ebselen oxide. Statistical analyses by 2-tailed Student's t test. (*) p< 0.05, (**) p < 0.005, (***) p < 0.001, (****) p < 0.0001. All data are presented as mean ± SEM.


Ebselen Control 2µM 10µM 20µM 0.05% DMSO 5µM 15µM


В

Α

Ebselen oxide

