Skip to main content

Surface Plasmon Resonance Biosensing

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 503))

Summary

Surface plasmon resonance (SPR) biosensors belong to label-free optical biosensing technologies. The SPR method is based on optical measurement of refractive index changes associated with the binding of analyte molecules in a sample to biorecognize molecules immobilized on the SPR sensor. Since late 1990's, SPR biosensors have become the main tool for the study of biomolecular interactions both in life science and pharmaceutical research. In addition, they have been increasingly applied in the detection of chemical and biological substances in important areas such as medical diagnostics, environmental monitoring, food safety and security. This chapter reviews the main principles of SPR biosensor technology and discusses applications of this technology for rapid, sensitive and specific detection of chemical and biological analytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 377, 528–539

    Article  CAS  PubMed  Google Scholar 

  2. Homola, J., Vaisocherová, H., Dostálek, J., and Piliarik, M. (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37, 26–36

    Article  CAS  PubMed  Google Scholar 

  3. Boozer, C., Kim, G., Cong, S.X., Guan, H.W., and Londergan, T. (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 17, 400–405

    Article  CAS  PubMed  Google Scholar 

  4. Rich, R.L., and Myszka, D.G. (2006) Survey of the year 2005 commercial optical biosensor literature. Journal of Molecular Recognition 19, 478–534

    Article  CAS  PubMed  Google Scholar 

  5. Homola, J. (2006) Surface plasmon resonance based sensors. Springer-Verlag

    Book  Google Scholar 

  6. Raether, H. (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics 111, 1–133

    Article  Google Scholar 

  7. de Feijter, J.A., Benjamins, J., and Veer, F.A. (1978) Ellipsometry as a tool to study the adsorption of synthetic and biopolymers at the air–water interface. Biopolymers 17, 1759–1772

    Article  Google Scholar 

  8. Tumolo, T., Angnes, L., and Baptista, M.S. (2004) Determination of the refractive index increment (dn/dc) of molecule and mac-romolecule solutions by surface plasmon resonance. Analytical Biochemistry 333, 273–279

    Article  CAS  PubMed  Google Scholar 

  9. Nenninger, G.G., Piliarik, M., and Homola, J. (2002) Data analysis for optical sensors based on spectroscopy of surface plasmons. Measurement Science … Technology 13, 2038–2046

    Article  CAS  Google Scholar 

  10. Piliarik, M., Vaisocherová, H., and Homola, J. (2007) Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensorors and Actuators B Chem 121, 187–193

    Article  Google Scholar 

  11. Tomizaki, K.Y., Usui, K., and Mihara, H. (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6, 782–799

    Article  CAS  PubMed  Google Scholar 

  12. Angenendt, P. (2005) Progress in protein and antibody microarray technology. Drug Discovery Today 10, 503–511

    Article  CAS  PubMed  Google Scholar 

  13. Elia, G., Silacci, M., Scheurer, S., Scheuermann, J., and Neri, D. (2002) Affinitycapture reagents for protein arrays. Trends Biotechnology 20, S19–S22

    Article  CAS  Google Scholar 

  14. Koubová, V., Brynda, E., Karasová, L., Škvor, J., Homola, J., Dostálek, J., Tobiška, P. , and Rošický, J. (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensorors and Actuators B Chem 74, 100–105

    Article  Google Scholar 

  15. Lofas, S., Johnsson, B., Edstrom, A., Hansson, A., Lindquist, G., Hillgren, R.M.M., and Stigh, L. (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface-plasmon resonance sensors. Biosensors … Bioelectronics 10, 813–822

    Article  Google Scholar 

  16. Busse, S., Scheumann, V., Menges, B., and Mittler, S. (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosensors … Bioelectronics 17, 704–710

    Article  CAS  Google Scholar 

  17. Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., and Jiang, S. (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20, 8090–8095

    Article  CAS  PubMed  Google Scholar 

  18. Oshannessy, D.J., Brighamburke, M., and Peck, K. (1992) Immobilization chemistries suitable for use in the biacore surface-plasmon resonance detector. Analytical Biochemistry 205, 132–136

    Article  CAS  Google Scholar 

  19. Knoll, W., Liley, M., Piscevic, D., Spinke, J., and Tarlov, M.J. (1997) Supramolecular architectures for the functionalization of solid surfaces. Advances in Biophysics 34, 231–251

    Article  CAS  PubMed  Google Scholar 

  20. Myszka, D.G., He, X., Dembo, M., Morton, T.A., and Goldstein, B. (1998) Extending the range of rate constants available from BIACORE: interpreting mass transportinfluenced binding data. Biophysical Journal 75, 583–594

    Article  CAS  PubMed  Google Scholar 

  21. Sikavitsas, V., Nitsche, J.M., and Mountziaris, T.J. (2002) Transport and kinetic processes underlying biomolecular interactions in the BIACORE optical biosensor. Biotechnology Progress 18, 885–897

    Article  CAS  PubMed  Google Scholar 

  22. Witz, J. (1999) Kinetic analysis of analyte binding by optical biosensors: hydrodynamic penetration of the analyte flow into the polymer matrix reduces the influence of mass transport. Analytical Biochemistry 270, 201–206

    Article  CAS  PubMed  Google Scholar 

  23. Ward, L.D., and Winzor, D.J. (2000) Relative merits of optical biosensors based on flow cell and cuvette designs. Analytical Biochemistry 285, 179–193

    Article  CAS  PubMed  Google Scholar 

  24. Sjölander, S., and Urbanitzky, C. (1991) Integrated fluid handling system for biomolecular interaction analysis. Analytical Chemistry 63, 2338–2345

    Article  PubMed  Google Scholar 

  25. Wang, H., Chen, S., Li, L., and Jiang, S. (2005) Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir 21, 2633–2636

    Article  CAS  PubMed  Google Scholar 

  26. Lahiri, J., Isaacs, L., Tien, J., and Whitesides, G.M. (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical Chemistry 71, 777–790

    Article  CAS  PubMed  Google Scholar 

  27. Vaisocherová, H., Zítová, A., Lachmanová, M., Štepánek, J., Kralíková, S., Liboška, R., Rejman, D., Rosenberg, I., and Homola, J. (2006) Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 82, 394–398

    Article  PubMed  Google Scholar 

  28. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y., Dairkee, S.H., Ljung, B.M., Gray, J.W., and Albertson, D.G. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics 20, 207–211

    Article  CAS  PubMed  Google Scholar 

  29. Homola, J., Dostálek, J., Chen, S.F., Rasooly, A., Jiang, S.Y., and Yee, S.S. (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology 75, 61–69

    Article  CAS  PubMed  Google Scholar 

  30. Oh, B.K., Kim, Y.K., Lee, W., Bae, Y.M., Lee, W.H., and Choi, J.W. (2003) Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosensors … Bioelectronics 18, 605–611

    Article  CAS  Google Scholar 

  31. Thomsen, V., Schatzlein, D., and Mercuro, D. (2003) Limits of detection in spectroscopy. Spectroscopy 18, 112–114

    CAS  Google Scholar 

  32. Gobi, K.V., Tanaka, H., Shoyama, Y., and Miura, N. (2004) Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging. Biosensors & Bioelectronics 20, 350–357

    Article  CAS  Google Scholar 

  33. Dostálek, J., and Homola, J. (2008) Surface plasmon resonance sensor based on an array of diffraction gratings for highly-parallelized observation of biomolecular interactions, Sensors and Actuators B: Chemical 129, 303–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Piliarik, M., Vaisocherová, H., Homola, J. (2009). Surface Plasmon Resonance Biosensing. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 503. Humana Press. https://doi.org/10.1007/978-1-60327-567-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-567-5_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-566-8

  • Online ISBN: 978-1-60327-567-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics