Skip to main content

Study of GPCR–Protein Interactions by BRET

  • Protocol
  • First Online:
Book cover Receptor Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 746))

Abstract

Bioluminescence resonance energy transfer (BRET) has become an extremely valuable technology for the real-time study of protein–protein interactions in live cells. This technique is highly amenable to the monitoring of G protein-coupled receptor (GPCR)–protein interactions, especially involving scaffolding, regulatory and signaling proteins, such as β-arrestins, which are now known to have significant roles in addition to receptor desensitization. The BRET procedure utilizes heterologous coexpression of fusion proteins linking one protein of interest (e.g. a GPCR) to a bioluminescent donor enzyme, a variant of Renilla luciferase, and a second protein of interest (e.g. β-arrestin) to an acceptor fluorophore. If in close proximity, energy resulting from the rapid oxidation of a cell-permeable coelenterazine substrate by the donor will transfer to the acceptor, which in turn fluoresces at a longer characteristic wavelength. Therefore, the occurrence of such energy transfer implies that the proteins of interest fused to the donor and acceptor interact directly or as part of a complex. BRET detection can be carried out using scanning spectrometry or dual-filter luminometry. The latest improvements in BRET methodology have enabled live cell drug screening as well as monitoring of previously undetectable protein-protein complexes, including constitutive GPCR/β-arrestin interactions. Therefore, BRET is likely to play an increasingly important role in GPCR research and drug discovery over the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfleger, K. D. G. and Eidne, K. A. (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat. Methods 3, 165–174.

    Article  PubMed  CAS  Google Scholar 

  2. Pfleger, K. D. G., Seeber, R. M., and Eidne, K. A. (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein–protein interactions. Nat. Protoc. 1, 337–345.

    Article  PubMed  CAS  Google Scholar 

  3. Kocan M., See H. B., Seeber R. M., Eidne K. A., and Pfleger K. D. G. (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J. Biomol. Screen. 13, 888–898.

    Article  PubMed  CAS  Google Scholar 

  4. Milligan, G. and Bouvier, M. (2005) Methods to monitor the quaternary structure of G-protein-coupled receptors. FEBS J. 272, 2914–2925.

    Article  PubMed  CAS  Google Scholar 

  5. Kocan M., See H. B., Sampaio N. G., Eidne K. A., Feldman B. J., and Pfleger K. D. G. (2009) Agonist-independent interactions between β-arrestins and mutant vasopressin type II receptors associated with nephrogenic syndrome of inappropriate antidiuresis. Mol. Endocrinol. 23, 559–571.

    Article  PubMed  CAS  Google Scholar 

  6. Pfleger, K. D. G., Dromey, J. R., Dalrymple, M. B., Lim, E. M. L., Thomas, W. G., and Eidne, K. A. (2006) Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein–protein interactions in live cells. Cell. Signal. 18, 1664–1670.

    Article  PubMed  CAS  Google Scholar 

  7. De, A., Loening, A. M., and Gambhir, S. S. (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res. 67, 7175–7183.

    Article  PubMed  CAS  Google Scholar 

  8. De A., Ray P., Loening A. M., and Gambhir S. S. (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein–protein interactions from single live cells and living ­animals. FASEB J. 23, 2702–2709.

    Article  PubMed  CAS  Google Scholar 

  9. Guo, W., Urizar, E., Kralikova, M., Mobarec, J. C., Shi, L., Filizola, M., and Javitch, J. A. (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304.

    Article  PubMed  CAS  Google Scholar 

  10. Kamal, M., Marquez, M., Vauthier, V., Leloire, A., Froguel, P., Jockers, R., and Couturier, C. (2009) Improved donor/acceptor BRET couples for monitoring β-arrestin recruitment to G protein-coupled receptors. Biotechnol. J. 4, 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  11. Pfleger, K. D. G. and Eidne, K. A. (2003) New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein ­coupled receptors. Pituitary 6, 141–151.

    Article  PubMed  CAS  Google Scholar 

  12. Pfleger, K. D. G. and Eidne, K. A. (2005) Monitoring the formation of dynamic G ­protein-coupled receptor-protein complexes in living cells. Biochem. J. 385, 625–637.

    Article  PubMed  CAS  Google Scholar 

  13. Hamdan, F. F., Audet, M., Garneau, P., Pelletier, J., and Bouvier, M. (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based β-arrestin2 recruitment assay. J. Biomol. Screen. 10, 463–475.

    Article  PubMed  CAS  Google Scholar 

  14. Pfleger, K. D. G., Dalrymple, M. B., Dromey, J. R., and Eidne, K. A. (2007) Monitoring interactions between G-protein-coupled receptors and β-arrestins. Biochem. Soc. Trans. 35, 764–766.

    Article  PubMed  CAS  Google Scholar 

  15. DeWire, S. M., Ahn, S., Lefkowitz, R. J., and Shenoy, S. K. (2007) β-arrestins and cell ­signaling. Annu. Rev. Physiol. 69, 483–510.

    Article  PubMed  CAS  Google Scholar 

  16. Dromey, J. R. and Pfleger, K. D. G. (2008) G protein-coupled receptors as drug targets: The role of β-arrestins. Endocr. Metab. Immune Disord. Drug Targets 8, 51–61.

    Article  PubMed  CAS  Google Scholar 

  17. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.

    Article  PubMed  CAS  Google Scholar 

  18. Mercier, J. F., Salahpour, A., Angers, S., Breit, A., and Bouvier, M. (2002) Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931.

    Article  PubMed  CAS  Google Scholar 

  19. Shaner, N. C., Campbell, R.E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  20. McVey, M., Ramsay, D., Kellett, E., Rees, S., Wilson, S., Pope, A. J., and Milligan, G. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. J. Biol. Chem. 276, 14092–14099.

    PubMed  CAS  Google Scholar 

  21. Zhang, J.-H., Chung, T. D. Y., and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73.

    Article  PubMed  Google Scholar 

  22. Wu, P. and Brand, L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

  23. Jaeger, W. C., Pfleger, K. D. G., and Eidne, K. A. Monitoring GPCR-protein complexes using bioluminescence resonance energy transfer, in G Protein Coupled Receptors: Essential Methods (Poyner, D. and Wheatley, M., ed.), John Wiley & Sons, Hoboken, NJ, 111–132.

    Google Scholar 

  24. Levi, J., De, A., Cheng, Z., and Gambhir, S. S. (2007) Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. J. Am. Chem. Soc. 129, 11900–11901.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KDGP’s work using the BRET methodology is funded by the National Health and Medical Research Council (NHMRC) of Australia (Project Grant #566736). KDGP is an Australian Research Council (ARC) Future Fellow (FT100100271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. G. Pfleger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kocan, M., Pfleger, K.D.G. (2011). Study of GPCR–Protein Interactions by BRET. In: Willars, G., Challiss, R. (eds) Receptor Signal Transduction Protocols. Methods in Molecular Biology, vol 746. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-126-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-126-0_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-125-3

  • Online ISBN: 978-1-61779-126-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics