Skip to main content

Regulation of BK Channel Activity by Cholesterol and Its Derivatives

  • Chapter
  • First Online:
Book cover Cholesterol Modulation of Protein Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1115))

Abstract

Cholesterol (CLR) is an essential structural lipid in the plasma membrane of animal cells. In addition, CLR has been widely recognized as a critical modulator of protein function, including ion channels. Voltage- and Ca2+-gated K+ (BK) channels control a wide variety of physiological processes, including cell excitability, smooth muscle contractility, sensory perception, neurotransmitter release, and hormone secretion. Thus, disruption of BK currents has been implicated in the pathophysiology of prevalent human diseases. The current chapter reviews the literature documenting CLR modulation of BK channel function at a variety of levels ranging from organ systems to artificial lipid bilayers. We discuss the use of CLR isomers and structural analogs as a tool to help in discerning the mechanisms underlying CLR-driven modification of BK current. The chapter is finalized with an overview of the phenomenology and potential mechanisms that govern CLR control over the alcohol (ethyl alcohol, ethanol) sensitivity of BK channels. Studies on CLR regulation of BK currents may ultimately pave the way for novel therapeutic approaches to combat prevalent pathophysiological and morbid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BK:

Voltage- and Ca2+-gated K+ (channels)

CLR:

Cholesterol

CTD:

Cytosolic tail domain

LDL:

Low-density lipoprotein

LRRC:

Leucine-rich repeat-containing (protein)

MβCD:

Methyl-β-cyclodextrin

PGD:

Pore-gate domain

RCK:

Regulator of conductance of potassium (domain)

SPM:

Sphingomyelin

TM:

Transmembrane

VSD:

Voltage-sensing domain

References

  1. Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7(12):921–31.

    PubMed  CAS  Google Scholar 

  2. Lee US, Cui J. BK channel activation: structural and functional insights. Trends Neurosci. 2010;33(9):415–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Meera P, Wallner M, Song M, Toro L. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci U S A. 1997;94(25):14066–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Koval OM, Fan Y, Rothberg BS. A role for the S0 transmembrane segment in voltage-dependent gating of BK channels. J Gen Physiol. 2007;129(3):209–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu G, Zakharov SI, Yao Y, Marx SO, Karlin A. Positions of the cytoplasmic end of BK α S0 helix relative to S1-S6 and of β1 TM1 and TM2 relative to S0-S6. J Gen Physiol. 2015;145(3):185–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Hite RK, Tao X, Mac Kinnon R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature. 2017;541(7635):52–7.

    PubMed  CAS  Google Scholar 

  7. Yang H, Hu L, Shi J, Cui J. Tuning magnesium sensitivity of BK channels by mutations. Biophys J. 2006;91(8):2892–900.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen RS, Geng Y, Magleby KL. Mg(2+) binding to open and closed states can activate BK channels provided that the voltage sensors are elevated. J Gen Physiol. 2011;138(6):593–607.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Miranda P, Giraldez T, Holmgren M. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring. Proc Natl Acad Sci U S A. 2016;113(49):14055–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Meredith A. Genetic methods for studying ion channel function in physiology and disease. In: Zheng J, Trudeau MC, editors. Handbook of ion channels. Boca Raton: CRC Press; 2015. p. 165–86.

    Google Scholar 

  11. Shipston MJ, Tian L. Posttranscriptional and posttranslational regulation of BK channels. Int Rev Neurobiol. 2016;128:91–126.

    PubMed  CAS  Google Scholar 

  12. Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, et al. Molecular determinants of BK channel functional diversity and functioning. Physiol Rev. 2017;97(1):39–87.

    PubMed  Google Scholar 

  13. Orio P, Rojas P, Ferreira G, Latorre R. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci. 2002;17:156–61.

    PubMed  CAS  Google Scholar 

  14. Behrens R, Nolting A, Reimann F, Schwarz M, Waldschütz R, Pongs O. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett. 2000;474(1):99–106.

    PubMed  CAS  Google Scholar 

  15. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem. 2000;275(9):6453–61.

    PubMed  CAS  Google Scholar 

  16. Brenner R, Peréz GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, et al. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.

    PubMed  CAS  Google Scholar 

  17. Contet C, Goulding SP, Kuljis DA, Barth AL. BK channels in the central nervous system. Int Rev Neurobiol. 2016;128:281–342.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Li Q, Yan J. Modulation of BK channel function by auxiliary beta and gamma subunits. Int Rev Neurobiol. 2016;128:51–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bukiya AN, Liu J, Toro L, Dopico AM. Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol. 2007;72(2):359–69.

    PubMed  CAS  Google Scholar 

  20. Bukiya AN, McMillan J, Liu J, Shivakumar B, Parrill AL, Dopico AM. Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. J Biol Chem. 2014;289(51):35314–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, et al. Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel β1-subunit by a novel nonsteroidal agent. Mol Pharmacol. 2013;83(5):1030–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Bukiya AN, Singh AK, Parrill AL, Dopico AM. The steroid interaction site in transmembrane domain 2 of the large conductance, voltage- and calcium-gated potassium (BK) channel accessory β1 subunit. Proc Natl Acad Sci U S A. 2011;108(50):20207–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bukiya AN, Vaithianathan T, Toro L, Dopico AM. Channel beta2-4 subunits fail to substitute for beta1 in sensitizing BK channels to lithocholate. Biochem Biophys Res Commun. 2009;390(3):995–1000.

    PubMed  CAS  Google Scholar 

  24. Hu S, Labuda MZ, Pandolfo M, Goss GG, McDermid HE, Ali DW. Variants of the KCNMB3 regulatory subunit of maxi BK channels affect channel inactivation. Physiol Genomics. 2003;15(3):191–8.

    PubMed  CAS  Google Scholar 

  25. Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol. 2014;5:382.

    PubMed  PubMed Central  Google Scholar 

  26. Yan J, Aldrich RW. BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci U S A. 2012;109(20):7917–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, et al. Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol. 2010;42(3):185–98.

    PubMed  CAS  Google Scholar 

  28. Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, et al. Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol. 2014;22(2):427–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Duncan PJ, Shipston MJ. BK channels and the control of the pituitary. Int Rev Neurobiol. 2016;128:343–68.

    PubMed  CAS  Google Scholar 

  30. Pyott SJ, Duncan RK. BK channels in the vertebrate inner ear. Int Rev Neurobiol. 2016;128:369–99.

    PubMed  CAS  Google Scholar 

  31. Whitt JP, Montgomery JR, Meredith AL. BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun. 2016;7:10837.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch. 2018;470(9):1271–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Dopico A.M., Bukiya A.N., Bettinger J.C. (2017) Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. In: Handbook of Experimental Pharmacology. Springer, Berlin, Heidelberg.

    Google Scholar 

  34. Li B, Gao TM. Functional role of mitochondrial and nuclear BK channels. Int Rev Neurobiol. 2016;128:163–91.

    PubMed  CAS  Google Scholar 

  35. Singh H, Stefani E, Toro L. Intracellular BK(Ca) (iBK(Ca)) channels. J Physiol. 2012;590(23):5937–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Gu XQ, Pamenter ME, Siemen D, Sun X, Haddad GG. Mitochondrial but not plasmalemmal BK channels are hypoxia-sensitive in human glioma. Glia. 2014;62(4):504–13.

    PubMed  Google Scholar 

  37. Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium. 2015;58(1):131–8.

    PubMed  CAS  Google Scholar 

  38. Balderas E, Zhang J, Stefani E, Toro L. Mitochondrial BKCa channel. Front Physiol. 2015;6:104.

    PubMed  PubMed Central  Google Scholar 

  39. Goldklang MP, Perez-Zoghbi JF, Trischler J, Nkyimbeng T, Zakharov SI, Shiomi T, et al. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. FASEB J. 2013;27(12):4975–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: implications for novel therapeutic approaches. Pharmacol Res. 2013;70(1):126–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Bentzen BH, Olesen SP, Rønn LC, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol. 2014;5:389.

    PubMed  PubMed Central  Google Scholar 

  42. Hu G, Antikainen R, Jousilahti P, Kivipelto M, Tuomilehto J. Total cholesterol and the risk of Parkinson disease. Neurology. 2008;70:1972–9.

    PubMed  CAS  Google Scholar 

  43. Bui QT, Prempeh M, Wilensky RL. Atherosclerotic plaque development. Int J Biochem Cell Biol. 2009;41:2109–13.

    PubMed  CAS  Google Scholar 

  44. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17:192–205.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Miller AA, Budzyn K, Sobey CG. Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clin Sci (Lond). 2010;119:1–17.

    CAS  Google Scholar 

  46. Jacobs D. Report of the conference on low blood cholesterol: mortality associations. Circulation. 1992;86:1046–60.

    PubMed  CAS  Google Scholar 

  47. Stachon A, Böning A, Weisser H, Laczkovics A, Skipka G, Krieg M. Prognostic significance of low serum cholesterol after cardiothoracic surgery. Clin Chem. 2000;46:1114–20.

    PubMed  CAS  Google Scholar 

  48. Dunham CM, Fealk MH, Sever WE III. Following severe injury, hypocholesterolemia improves with convalescence but persists with organ failure or onset of infection. Crit Care. 2003;7:R145–53.

    PubMed  PubMed Central  Google Scholar 

  49. Guimarães SM, Lima EQ, Cipullo JP, Lobo SM, Burdmann EA. Low insulin-like growth factor-1 and hypocholesterolemia as mortality predictors in acute kidney injury in the intensive care unit. Crit Care Med. 2008;36:3165–70.

    PubMed  Google Scholar 

  50. Vyroubal P, Chiarla C, Giovannini I, Hyspler R, Ticha A, Hrnciarikova D, et al. Hypocholesterolemia in clinically serious conditions–review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152:181–9.

    PubMed  CAS  Google Scholar 

  51. Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P. Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch. 1989;415:262–8.

    PubMed  CAS  Google Scholar 

  52. Dopico AM, Bukiya AN, Singh AK. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther. 2012;135(2):133–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Wiecha J, Schläger B, Voisard R, Hannekum A, Mattfeldt T, Hombach V. Ca2+-activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments. Basic Res Cardiol. 1997;92:233–9.

    PubMed  CAS  Google Scholar 

  54. Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21:28–38.

    PubMed  CAS  Google Scholar 

  55. Chan J, Karere G, Cox L, VandeBerg J. Animal models of diet-induced hypercholesterolemia. In: Kumar SA, editor. Hypercholesterolemia. Den Haag: INTECH; 2015. p. 3–31.

    Google Scholar 

  56. Bukiya A, Rosenhouse-Dantsker A. Hypercholesterolemia effect on potassium channels. In: Kumar SA, editor. Hypercholesterolemia. Den Haag: INTECH; 2015. p. 95–119.

    Google Scholar 

  57. Jeremy RW, McCarron H. Effect of hypercholesterolemia on Ca2+-dependent K+ channel-mediated vasodilatation in vivo. Am J Physiol Heart Circ Physiol. 2000;279:H1600–8.

    PubMed  CAS  Google Scholar 

  58. Najibi S, Cohen RA. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Am J Phys. 1995;269(3 Pt 2):H805–11.

    CAS  Google Scholar 

  59. Bukiya A, Dopico AM, Leffler CW, Fedinec A. Dietary cholesterol protects against alcohol-induced cerebral artery constriction. Alcohol Clin Exp Res. 2014;38(5):1216–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Simakova MN, Bisen S, Dopico AM, Bukiya AN. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle. Biochem Pharmacol. 2017;145:81–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Du P, Cui GB, Wang YR, Zhang XY, Ma KJ, Wei JG. Down regulated expression of the beta1 subunit of the big-conductance Ca2+ sensitive K+ channel in sphincter of Oddi cells from rabbits fed with a high cholesterol diet. Acta Biochim Biophys Sin Shanghai. 2006;38(12):893–9.

    PubMed  CAS  Google Scholar 

  62. Chang HM, Reitstetter R, Mason RP, Gruener R. Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol. 1995;143:51–63.

    PubMed  CAS  Google Scholar 

  63. Crowley JJ, Treistman SN, Dopico AM. Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol Pharmacol. 2003;64(2):365–72.

    PubMed  CAS  Google Scholar 

  64. Bukiya AN, Vaithianathan T, Toro L, Dopico AM. The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta(1) subunit is a lithocholate sensor. FEBS Lett. 2008;582(5):673–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Bukiya AN, Vaithianathan T, Kuntamallappanavar G, Asuncion-Chin M, Dopico AM. Smooth muscle cholesterol enables BK β1 subunit-mediated channel inhibition and subsequent vasoconstriction evoked by alcohol. Arterioscler Thromb Vasc Biol. 2011;31:2410–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Bisen S, Seleverstov O, Belani J, Rychnovsky S, Dopico AM, Bukiya AN. Distinct mechanisms underlying cholesterol protection against alcohol-induced BK channel inhibition and resulting vasoconstriction. Biochim Biophys Acta. 2016;1861(11):1756–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Bregestovski PD, Bolotina VN. Membrane fluidity and kinetics of Ca2+-dependent potassium channels. Biomed Biochim Acta. 1989;48:S382–7.

    PubMed  CAS  Google Scholar 

  69. Brainard AM, Miller AJ, Martens JR, England SK. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol. 2005;289:C49–57.

    PubMed  CAS  Google Scholar 

  70. Tajima N, Itokazu Y, Korpi ER, Somerharju P, Käkelä R. Activity of BK(Ca) channel is modulated by membrane cholesterol content and association with Na+/K+-ATPase in human melanoma IGR39 cells. J Biol Chem. 2011;286:5624–38.

    PubMed  CAS  Google Scholar 

  71. Weaver AK, Olsen ML, McFerrin MB, Sontheimer H. BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca2+]i to ion channel activation. J Biol Chem. 2007;282:31558–68.

    PubMed  CAS  Google Scholar 

  72. Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, et al. Caveolae targeting and regulation of large conductance Ca2+-activated K+ channels in vascular endothelial cells. J Biol Chem. 2005;280:11656–64.

    PubMed  CAS  Google Scholar 

  73. Shmygol A, Noble K, Wray S. Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. J Physiol. 2007;581(Pt 2):445–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Babiychuk EB, Smith RD, Burdyga T, Babiychuk VS, Wray S, Draeger A. Membrane cholesterol regulates smooth muscle phasic contraction. J Membr Biol. 2004;198:95–101.

    PubMed  CAS  Google Scholar 

  75. Prendergast C, Quayle J, Burdyga T, Wray S. Cholesterol depletion alters coronary artery myocyte Ca2+ signalling in a stimulus-specific manner. Cell Calcium. 2010;47:84–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Lin MW, Wu AZ, Ting WH, Li CL, Cheng KS, Wu SN. Changes in membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large-conductance Ca2+-activated K+ channels. Chin J Physiol. 2006;49:1–13.

    PubMed  CAS  Google Scholar 

  77. Lam RS, Shaw AR, Duszyk M. Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochim Biophys Acta. 2004;1667:241–8.

    PubMed  CAS  Google Scholar 

  78. Purcell EK, Liu L, Thomas PV, Duncan RK. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One. 2011;6:e26289.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Sones WR, Davis AJ, Leblanc N, Greenwood IA. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Cardiovasc Res. 2010;87:476–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Bravo-Zehnder M, Orio P, Norambuena A, Wallner M, Meera P, Toro L, et al. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc Natl Acad Sci U S A. 2000;97:13114–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Alioua A, Lu R, Kumar Y, Eghbali M, Kundu P, Toro L, et al. Slo1 caveolin-binding motif, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. J Biol Chem. 2008;283(8):4808–17.

    PubMed  CAS  Google Scholar 

  82. Yuan C, Chen M, Covey DF, Johnston LJ, Treistman SN. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids. PLoS One. 2011;6:e27572.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. King JT, Lovell PV, Rishniw M, Kotlikoff MI, Zeeman ML, McCobb DP. Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. J Neurophysiol. 2006;95:2878–88.

    PubMed  CAS  Google Scholar 

  84. Gennis RB. Biomembranes: molecular structure and function. New York: Springer; 1989.

    Google Scholar 

  85. Sackmann E. Biological membranes architecture and function. In: Lypowsky R, Sackmann E, editors. Structure and dynamics of membranes. Amsterdam: Elsevier; 1995. p. 1–63.

    Google Scholar 

  86. Lis LJ, McAlister M, Fuller N, Rand RP, Parsegian VA. Measurement of the lateral compressibility of several phospholipid bilayers. Biophys J. 1982;37(3):667–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Starke-Peterkovic T, Turner N, Vitha MF, Waller MP, Hibbs DE, Clarke RJ. Cholesterol effect on the dipole potential of lipid membranes. Biophys J. 2006;90(11):4060–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Heiner AL, Gibbons E, Fairbourn JL, Gonzalez LJ, McLemore CO, Brueseke TJ, et al. Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J. 2008;94:3084–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids. 2016;199:39–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Alobeedallah H, Cornell B, Coster H. The effect of cholesterol on the dielectric structure of lipid bilayers. J Membr Biol. 2018;251(1):153–61.

    PubMed  CAS  Google Scholar 

  91. Bukiya AN, Belani JD, Rychnovsky S, Dopico AM. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol. 2011;137(1):93–110.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Alakoskela J, Sabatini K, Jiang X, Laitala V, Covey DF, Kinnunen PK. Enantiospecific interactions between cholesterol and phospholipids. Langmuir. 2008;24(3):830–6.

    PubMed  CAS  Google Scholar 

  93. Crowder CM, Westover EJ, Kumar AS, Ostlund RE Jr, Covey DF. Enantiospecificity of cholesterol function in vivo. J Biol Chem. 2001;276:44369–72.

    PubMed  CAS  Google Scholar 

  94. Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J. 2002;83:3211–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Westover EJ, Covey DF. The enantiomer of cholesterol. J Membr Biol. 2004;202:61–72.

    PubMed  CAS  Google Scholar 

  96. Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000;39:843–9.

    PubMed  CAS  Google Scholar 

  97. Le Goff G, Vitha MF, Clarke RJ. Orientational polarisability of lipid membrane surfaces. Biochim Biophys Acta. 2007;1768:562–70.

    PubMed  Google Scholar 

  98. Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45(4):279–94.

    PubMed  CAS  Google Scholar 

  99. Fantini J, Di Scala C, Baier CJ, Barrantes FJ. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids. 2016;199:52–60.

    PubMed  CAS  Google Scholar 

  100. Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287(24):20509–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R. Structure of the human BK channel Ca2+-activation apparatus at 3.0 Å resolution. Science. 2010;329(5988):182–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Chu B, Dopico AM, Lemos JR, Treistman SN. Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers. Mol Pharmacol. 1998;54(2):397–406.

    PubMed  CAS  Google Scholar 

  103. Dopico AM, Lemos JR, Treistman SN. Ethanol increases the activity of large conductance, Ca(2+)-activated K+ channels in isolated neurohypophysial terminals. Mol Pharmacol. 1996;49(1):40–8.

    PubMed  CAS  Google Scholar 

  104. Dopico AM, Anantharam V, Treistman SN. Ethanol increases the activity of Ca(++)-dependent K+ (mslo) channels: functional interaction with cytosolic Ca++. J Pharmacol Exp Ther. 1998;284(1):258–68.

    PubMed  CAS  Google Scholar 

  105. Liu J, Vaithianathan T, Manivannan K, Parrill A, Dopico AM. Ethanol modulates BKCa channels by acting as an adjuvant of calcium. Mol Pharmacol. 2008;74(3):628–40.

    PubMed  CAS  Google Scholar 

  106. Bukiya AN, Liu J, Dopico AM. The BK channel accessory beta1 subunit determines alcohol-induced cerebrovascular constriction. FEBS Lett. 2009;583(17):2779–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. London E. Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. 2002;12:480–6.

    PubMed  CAS  Google Scholar 

  108. London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta. 2005;1746:203–20.

    PubMed  CAS  Google Scholar 

  109. Yuan C, Furlong J, Burgos P, Johnston LJ. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J. 2002;82:2526–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Johnston LJ. Nanoscale imaging of domains in supported lipid membranes. Langmuir. 2007;23:5886–95.

    PubMed  CAS  Google Scholar 

  111. Liu P, Xi Q, Ahmed A, Jaggar JH, Dopico AM. Essential role for smooth muscle BK channels in alcohol-induced cerebrovascular constriction. Proc Natl Acad Sci U S A. 2004;101(52):18217–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Gonzalez-Perez V, Xia XM, Lingle CJ. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating. Nat Commun. 2015;6:8341.

    PubMed  CAS  Google Scholar 

  113. Bukiya AN, Kuntamallappanavar G, Edwards J, Singh AK, Shivakumar B, Dopico AM. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proc Natl Acad Sci U S A. 2014;111(25):9313–8.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Alcohol Abuse and Alcoholism and National Heart and Lung Institute grants R37 AA11560 (AMD), R01 HL104631 (AMD), and R01 AA023764 (ANB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna N. Bukiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bukiya, A.N., Dopico, A.M. (2019). Regulation of BK Channel Activity by Cholesterol and Its Derivatives. In: Rosenhouse-Dantsker, A., Bukiya, A.N. (eds) Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-04278-3_3

Download citation

Publish with us

Policies and ethics