Skip to main content

A Toolkit for Real-Time Detection of cAMP: Insights into Compartmentalized Signaling

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

The study of cAMP signaling has received a renewed impulse since the recognition that a key aspect of this pathway is the tight spatial control of signal propagation. The study of the mechanism that regulates cAMP signaling in space and time has prompted the development of new methodological approaches to detect cAMP in intact cells. Over the last decades, techniques to assess cAMP concentration with high spatial and temporal resolution in living cells have been elaborated that are based on fluorescent molecules and the phenomenon of fluorescence resonance energy transfer (FRET). A FRET-based indicator of cAMP concentration is typically a protein, including two fluorophores that are linked to a cAMP-binding domain. Binding of cAMP causes a change in the protein conformation and, as a consequence, in the distance between the fluorophores, thus altering the energy transfer between them. Several FRET indicators have been developed, differing in their affinity for cAMP, kinetic features and intracellular targeting. Such indicators enable the measurement of cAMP fluctuations as they happen in the complex intracellular environment and are proving to be effective tools to dissect compartmentalized cAMP signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AC:

Adenylyl cyclase

AKAP:

A-kinase anchoring protein

cAMP:

3′-5′-Cyclic adenosine monophosphate

C:

Catalytic subunit of PKA

CFP:

Cyan fluorescent protein

CNG:

Cyclic-nucleotide-gated channel

DD:

dimerization/docking domain

DEP:

Disheveled, Egl-10 and Pleckstrin homology domain

Epac:

Exchange protein directly activated by cAMP

FRET:

Fluorescence resonance energy transfer

GEF:

Guanine nucleotide exchange factor

GFP:

Green fluorescent protein

HCN:

Hyperpolarization-activated cyclic nucleotide modulated channel

IBMX:

3-Isobutyl-1-methylxanthine

IS:

Inhibitory site of PKA

mp :

Myristoylation and palmitoylation sequence

nls :

Nuclear localization sequence

NE:

Norepinephrine

PDE:

Phosphodiesterase

PGE1:

Prostaglandin E 1

PKA:

Protein kinase A

R:

Regulatory subunit of PKA

Rol:

Rolipram

YFP:

Yellow fluorescent protein

References

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697

    Article  PubMed  CAS  Google Scholar 

  • Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–266

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Broillet MC (2000) A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J Biol Chem 275:15135–15141

    Article  PubMed  CAS  Google Scholar 

  • Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397

    PubMed  CAS  Google Scholar 

  • Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293:98–101

    Article  PubMed  CAS  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    Article  PubMed  CAS  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (2003) Epac is a Rap1 guanine-nucleotide-exchange-factor directly activated by cAMP. Nature 396:474–477

    Google Scholar 

  • Dhallan RS, Yau KW, Schrader KA, Reed RR (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–187

    Article  PubMed  CAS  Google Scholar 

  • Diller TC, Madhusudan, Xuong NH, Taylor SS (2001) Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 9:73–82

    Article  PubMed  CAS  Google Scholar 

  • DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signalling within discrete subcellular compartments. Proc Natl Acad Sci 101:16513–16518

    Article  PubMed  CAS  Google Scholar 

  • Finn JT, Grunwald ME, Yau KW (1996) Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol 58:395–426

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  • Francis SH, Corbin JD (1999) Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 36:275–328

    Article  PubMed  CAS  Google Scholar 

  • Goaillard JM, Vincent PV, Fischmeister R (2001) Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J Physiol 530:79–91

    Article  PubMed  CAS  Google Scholar 

  • Golla R, Seethala R (2002) A homogeneous enzyme fragment complementation cyclic AMP screen for GPCR agonists. J Biomol Screen 7:515–525

    Article  PubMed  CAS  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Petersen OH (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17:95–101

    Article  PubMed  CAS  Google Scholar 

  • Lissandron V, Terrin A, Collini M, D’Alfonso L, Chirico G, Pantano S, Zaccolo M (2005) Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. J Mol Biol 354:546–555

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Chen TY, Ahamed B, Li J, Yau KW (1994) Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95:67–75

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Engelhardt S, Walter U, Lohse MJ (2005) Real-time monitoring of the PDE2 activity of live cells: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280:1716–1719

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis FJ, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1–5

    Article  CAS  Google Scholar 

  • Rehmann H, Prakash B, Wolf E, Rueppel A, De Rooij J, Bos JL, Wittinghofer A (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol 10:26–32

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    Article  PubMed  CAS  Google Scholar 

  • Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001a) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98:13049–13054

    Article  PubMed  CAS  Google Scholar 

  • Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW (2001b) In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 118:63–78

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  PubMed  CAS  Google Scholar 

  • Steiner AL, Kipnis DM, Utiger R, Parker C (1969) Radioimmunoassay for the measurement of adenosine 3′,5′-cyclic phosphate. Proc Natl Acad Sci USA 64:367–373

    Article  PubMed  CAS  Google Scholar 

  • Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS, Kim C, Vigil D, Haste NM, Yang J, Wu J, Anand GS (2005) Dynamics of signaling by PKA. Biochim Biophys Acta 1754:25–37

    PubMed  CAS  Google Scholar 

  • Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G, Elvassore N, Prinz A, Herberg FW, Houslay MD, Zaccolo M (2006) PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol

    Google Scholar 

  • Warrier S, Belevych AE, Ruse M, Eckert RL, Zaccolo M, Pozzan T, Harvey RD (2005) Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor. Am J Physiol Cell Physiol 289:C455–C461

    Article  PubMed  CAS  Google Scholar 

  • Williams C (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat Rev Drug Discov 3:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Magalhaes P, Pozzan T (2002) Compartmentalisation of cAMP and Ca(2+) signals. Curr Opin Cell Biol 14:160–166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berrera, M., Dodoni, G., Monterisi, S., Pertegato, V., Zamparo, I., Zaccolo, M. (2008). A Toolkit for Real-Time Detection of cAMP: Insights into Compartmentalized Signaling. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_12

Download citation

Publish with us

Policies and ethics