Skip to main content

Presynaptic Metabotropic Receptors for Acetylcholine and Adrenaline/Noradrenaline

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline were first described more than three decades ago. Molecular cloning has resulted in the identification of five G protein-coupled muscarinic receptors (M1 – M5) which mediate the biological effects of acetylcholine. Nine adrenoceptors (α1ABD2ABC123) transmit adrenaline/noradrenaline signals between cells. The lack of sufficiently subtype-selective ligands has prevented identification of the physiological role and therapeutic potential of these receptor subtypes for a long time. Recently, mouse lines with targeted deletions for all muscarinic and adrenoceptor genes have been generated. This review summarizes the results from these gene-targeting studies with particular emphasis on presynaptic auto- and heteroreceptor functions of muscarinic and adrenergic receptors. Specific knowledge about the function of receptor subtypes will enhance our understanding of the physiological role of the cholinergic and adrenergic nervous system and open new avenues for subtype-selective therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in α2A -adrenergic receptor knockout mice. Mol Pharmacol 56:154-61

    CAS  PubMed  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neurosci 6:51-8

    CAS  PubMed  Google Scholar 

  • Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of α2A adrenergic receptor-like immunoreactivity. Brain Res 650:181-204

    CAS  PubMed  Google Scholar 

  • Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 24:334-44

    CAS  PubMed  Google Scholar 

  • Arch JR (2002) β3 -adrenoceptor agonists:potential, pitfalls and progress. Eur J Pharmacol 440:99-107

    CAS  PubMed  Google Scholar 

  • Arner P (2005) Human fat cell lipolysis:biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19:471-82

    CAS  PubMed  Google Scholar 

  • Auclair A, Cotecchia S, Glowinski J, Tassin JP (2002) D-amphetamine fails to increase extracellular dopamine levels in mice lacking α1B -adrenergic receptors:relationship between functional and nonfunctional dopamine release. J Neurosci 22:9150-4

    CAS  PubMed  Google Scholar 

  • Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004) 5-HT2A and α1B -adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20:3073-84

    PubMed  Google Scholar 

  • Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452-7

    CAS  PubMed  Google Scholar 

  • Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, Levey AI (2001) M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci 18:512-24

    CAS  PubMed  Google Scholar 

  • Bernardini N, Roza C, Sauer SK, Gomeza J, Wess J, Reeh PW (2002) Muscarinic M2 receptors on peripheral nerve endings:a molecular target of antinociception. J Neurosci 22: RC229.

    PubMed  Google Scholar 

  • Bjorklund M, Sirvio J, Sallinen J, Scheinin M, Kobilka BK, Riekkinen P, Jr. (1999) α2C adrenoceptor overexpression disrupts execution of spatial and non-spatial search patterns. Neuroscience 88:1187-98

    CAS  PubMed  Google Scholar 

  • Bjorklund M, Sirvio J, Riekkinen M, Sallinen J, Scheinin M, Riekkinen P, Jr. (2000) Overexpression of α2C -adrenoceptors impairs water maze navigation. Neuroscience 95:481-7

    CAS  PubMed  Google Scholar 

  • Bjorklund M, Siverina I, Heikkinen T, Tanila H, Sallinen J, Scheinin M, Riekkinen P, Jr. (2001) Spatial working memory improvement by an α2C -adrenoceptor agonist dexmedetomidine is not mediated through α2C -adrenoceptor. Prog Neuropsychopharmacol Biol Psychiatry 25:1539-54

    CAS  PubMed  Google Scholar 

  • Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43-99

    CAS  PubMed  Google Scholar 

  • Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S, Lohse MJ, Hein L (2002) Feedback inhibition of catecholamine release by two different α2 -adrenoceptor subtypes prevents progression of heart failure. Circulation 106:2491-6

    CAS  PubMed  Google Scholar 

  • Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003) Differential control of adrenal and sympathetic catecholamine release by α2 -adrenoceptor subtypes. Mol Endocrinol 17:1640-6.

    CAS  PubMed  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651-90

    CAS  PubMed  Google Scholar 

  • Brum PC, Kosek J, Patterson A, Bernstein D, Kobilka B (2002) Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. Am J Physiol Heart Circ Physiol 283:H1838-45

    CAS  PubMed  Google Scholar 

  • B ücheler M, Hadamek K, Hein L (2002) Two α2 -adrenergic receptor subtypes, α2A and α2C , inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819-26

    Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Jr., Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121-36

    CAS  PubMed  Google Scholar 

  • Bymaster FP, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton SE, Nathanson NM, McKinzie DL, Felder CC (2003a) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. The Eur J Neurosci 17:1403-10

    Google Scholar 

  • Bymaster FP, McKinzie DL, Felder CC, Wess J (2003b) Use of M1 -M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437-42

    CAS  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279-90

    CAS  PubMed  Google Scholar 

  • Caulfield MP, Robbins J, Higashida H, Brown DA (1993) Postsynaptic actions of acetylcholine:the coupling of muscarinic receptor subtypes to neuronal ion channels. Progr Brain Res 98:293-301

    CAS  Google Scholar 

  • Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the α1B -adrenergic receptor. Proc Natl Acad Sci USA 94:11589-94

    CAS  PubMed  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820-9

    CAS  PubMed  Google Scholar 

  • Chen Q, Takahashi S, Zhong S, Hosoda C, Zheng HY, Ogushi T, Fujimura T, Ohta N, Tanoue A, Tsujimoto G, Kitamura T (2005) Function of the lower urinary tract in mice lacking α1D adrenoceptor. J Urol 174:370-4

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Minneman KP (2005) Recent progress in α1 -adrenergic receptor research. Acta Pharmacol Sin 26:1281-7

    CAS  PubMed  Google Scholar 

  • Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK (1999) Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 274:16694-700

    CAS  PubMed  Google Scholar 

  • Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ (2003) Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 5:659-67

    CAS  PubMed  Google Scholar 

  • Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H (2001) α2B -adrenergic receptors activate MAPK and modulate the proliferation of primary cultured proximal tubule cells. Am J Physiol Renal Physiol 8:8

    Google Scholar 

  • Day HE, Campeau S, Watson SJ, Jr., Akil H (1997) Distribution of α1A -, α1B - and α1D -adrenergic receptor mRNA in the rat brain and spinal cord. Journal of chemical neuroanatomy 13:115-39

    CAS  PubMed  Google Scholar 

  • Dennedy MC, Houlihan DD, McMillan H, Morrison JJ (2002) β2 - and β3 -adrenoreceptor ago- nists:human myometrial selectivity and effects on umbilical artery tone. Am J Obstet Gynecol 187:641-7

    CAS  PubMed  Google Scholar 

  • Drago J, McColl CD, Horne MK, Finkelstein DI, Ross SA (2003) Neuronal nicotinic receptors:insights gained from gene knockout and knockin mutant mice. Cell Mol Life Sci 60:1267-80

    CAS  PubMed  Google Scholar 

  • Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP (2002) α1B adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:2873-24

    CAS  PubMed  Google Scholar 

  • Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219-33

    CAS  PubMed  Google Scholar 

  • Eglen RM, Nahorski SR (2000) The muscarinic M5 receptor:a silent or emerging subtype? Br J Pharmacol 130:13-21

    CAS  PubMed  Google Scholar 

  • Fagerholm V, Philipp M, Hein L, Scheinin M (2004) [Ethyl-3 H]RS-79948-197 α2 -adrenoceptor autoradiography validation in α2 -adrenoceptor knockout mice. Eur J Pharmacol 497:301-9

    CAS  PubMed  Google Scholar 

  • Fairbanks CA, Wilcox GL (1999) Spinal antinociceptive synergism between morphine and cloni- dine persists in mice made acutely or chronically tolerant to morphine. J Pharmacol Exp Ther 288:1107-16

    CAS  PubMed  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91-6

    CAS  PubMed  Google Scholar 

  • Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33:615-24

    CAS  PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus:new evidence of anatomical and physiological specificity. Physiol Rev 63:844-914

    CAS  PubMed  Google Scholar 

  • Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J (2006a) Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metabol 4:363-75

    CAS  Google Scholar 

  • Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J (2006b) A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metabol 3:449-61

    CAS  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98:15312-17

    CAS  PubMed  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999a) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692-7

    CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J (1999b) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483-8

    CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457-66

    CAS  PubMed  Google Scholar 

  • Guimar ães S, Moura D (2001) Vascular adrenoceptors:an update. Pharmacol Rev 53:319-56

    Google Scholar 

  • Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM (1997) Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94:13311-16

    CAS  PubMed  Google Scholar 

  • Harasawa I, Honda K, Tanoue A, Shinoura H, Ishida Y, Okamura H, Murao N, Tsujimoto G, Higa K, Kamiya HO, Takano Y (2003) Responses to noxious stimuli in mice lacking α1D adrenergic receptors. Neuroreport 14:1857-60

    CAS  PubMed  Google Scholar 

  • Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M1 muscarinic acetylcholine receptor. J Exp Pharmacol Ther 301:129-37

    CAS  Google Scholar 

  • Hein L (2001) Transgenic models of α2 -adrenergic receptor subtype function. Rev Physiol Biochem Pharmacol 142:161-85

    CAS  PubMed  Google Scholar 

  • Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct α2 -adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181-4

    CAS  PubMed  Google Scholar 

  • Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM (1997) Assessment of the role of α2 -adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339-44

    CAS  PubMed  Google Scholar 

  • Janumpalli S, Butler LS, MacMillan LB, Limbird LE, McNamara JO (1998) A point mutation (D79N) of the α2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 18:2004-8

    CAS  PubMed  Google Scholar 

  • Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP (2005) Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M3 receptor-dependent. Eur J Pharmacol 517:103-10

    CAS  PubMed  Google Scholar 

  • Kintsurashvili E, Gavras I, Johns C, Gavras H (2001) Effects of antisense oligodeoxynucleotide targeting of the α2B -adrenergic receptor messenger RNA in the central nervous system. Hypertension 38:1075-80

    CAS  PubMed  Google Scholar 

  • Kitazawa T, Hashiba K, Cao J, Unno T, Komori S, Yamada M, Wess J, Taneike T (2007) Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility:studies with muscarinic receptor knockout mice. Eur J Pharmacol 554:212-22

    CAS  PubMed  Google Scholar 

  • Knauber J, Muller WE (2000) Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1B -adrenoceptor. Eur Neuropsychopharmacol 10:423-7

    CAS  PubMed  Google Scholar 

  • Koshimizu TA, Tanoue A, Tsujimoto G (2006) Clinical implications from studies of α1 adrenergic receptor knockout mice. Biochem Pharmacol.

    Google Scholar 

  • Kubista H, Boehm S (2006) Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 112:213-42

    CAS  PubMed  Google Scholar 

  • Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant α2A -adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 94:9950-5

    CAS  PubMed  Google Scholar 

  • Langer SZ (1997) 25 years since the discovery of presynaptic receptors:present knowledge and future perspectives. Trends Pharmacol Sci 18:95-9

    CAS  PubMed  Google Scholar 

  • Langer SZ, Duval N, Massingham R (1985) Pharmacologic and therapeutic significance of αadrenoceptor subtypes. J Cardiovasc Pharmacol 7:S1-8

    CAS  PubMed  Google Scholar 

  • Levey AI (1993) Immunological localization of M1 -M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441-8

    CAS  PubMed  Google Scholar 

  • Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA (1994) Localization of muscarinic M3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207-21

    CAS  PubMed  Google Scholar 

  • Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse α2C -adrenoceptor homolog. Mol Pharmacol 48:48-55

    CAS  PubMed  Google Scholar 

  • Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2 -adrenergic receptor subtypes b and c. Science 273:803-5

    CAS  PubMed  Google Scholar 

  • Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP, Maze M (2004) Dexmedetomidine produces its neuroprotective effect via the α2A -adrenoceptor subtype. Eur J Pharmacol 502:87-97

    CAS  PubMed  Google Scholar 

  • MacDonald E, Scheinin M (1995) Distribution and pharmacology of α2 -adrenoceptors in the central nervous system. J Physiol Pharmacol 46:241-58

    CAS  PubMed  Google Scholar 

  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the α2A -adrenergic receptor subtype. Science 273:801-3

    CAS  PubMed  Google Scholar 

  • Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H (1999a) Role of the α2B adrenergic receptor in the development of salt-induced hypertension. Hypertension 33:14-17

    CAS  Google Scholar 

  • Makaritsis KP, Johns C, Gavras I, Altman JD, Handy DE, Bresnahan MR, Gavras H (1999b) Sympathoinhibitory function of the α2A -adrenergic receptor subtype. Hypertension 34:403-7

    CAS  Google Scholar 

  • Makaritsis KP, Johns C, Gavras I, Gavras H (2000) Role of α2 -adrenergic receptor subtypes in the acute hypertensive response to hypertonic saline infusion in anephric mice. Hypertension 35:609-13

    CAS  PubMed  Google Scholar 

  • Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579-84

    CAS  PubMed  Google Scholar 

  • McCune SK, Voigt MM, Hill JM (1993) Expression of multiple α adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience 57:143-51

    CAS  PubMed  Google Scholar 

  • Michel MC, Vrydag W (2006) α1 -, α2 - and β-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147 Suppl 2:S88-119

    Google Scholar 

  • Michelotti GA, Price DT, Schwinn DA (2000) α1 -adrenergic receptor regulation:basic science and clinical implications. Pharmacol Ther 88:281-309

    CAS  PubMed  Google Scholar 

  • Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201-27

    CAS  PubMed  Google Scholar 

  • Mishima K, Tanoue A, Tsuda M, Hasebe N, Fukue Y, Egashira N, Takano Y, Kamiya HO, Tsujimoto G, Iwasaki K, Fujiwara M (2004) Characteristics of behavioral abnormalities in α1D adrenoceptors deficient mice. Behav Brain Res 152:365-73

    CAS  PubMed  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampusdependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239-50

    CAS  PubMed  Google Scholar 

  • Moura E, Afonso J, Hein L, Vieira-Coelho MA (2006) α2 -adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br J Pharmacol 149:1049-58

    CAS  PubMed  Google Scholar 

  • Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131-43

    CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone V, Hokfelt T (1993) Distributions of mRNAs for α2 adrenergic receptor subtypes in rat brain:an in situ hybridization study. J Comp Neurol 328:575-94

    CAS  PubMed  Google Scholar 

  • Nicholas AP, Hokfelt T, Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245-55

    CAS  PubMed  Google Scholar 

  • Niederhoffer N, Hein L, Starke K (2004) Modulation of the baroreceptor reflex by α2A - adrenoceptors:a study in α2A knockout mice. Br J Pharmacol 141:851-9

    CAS  PubMed  Google Scholar 

  • Ordway GA, O’Donnell JM, Frazer A (1987) Effects of clenbuterol on central β1 and β2 adrenergic receptors of the rat. J Pharmacol Exp Ther 241:187-95

    CAS  PubMed  Google Scholar 

  • Ordway GA, Gambarana C, Frazer A (1988) Quantitative autoradiography of central beta adrenoceptor subtypes:comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther 247:379-89

    CAS  PubMed  Google Scholar 

  • Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM (2002) Mice expressing the α1B -adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem 83:623-34

    CAS  PubMed  Google Scholar 

  • Paris A, Philipp M, Tonner PH, Steinfath M, Lohse M, Scholz J, Hein L (2003) Activation of α2B -adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiol 99:889-95

    CAS  Google Scholar 

  • Paris A, Mantz J, Tonner PH, Hein L, Brede M, Gressens P (2006) The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the α2A -adrenoceptor subtype. Anesth Analg 102:456-61

    CAS  PubMed  Google Scholar 

  • Philipp M, Brede M, Hein L (2002a) Physiological significance of α2A -adrenergic receptor subtype diversity:one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283:R287-95

    CAS  Google Scholar 

  • Philipp M, Brede ME, Hadamek K, Gessler M, Lohse MJ, Hein L (2002b) Placental α2 - adrenoceptors control vascular development at the interface between mother and embryo. Nat Genet 31:311-15

    CAS  Google Scholar 

  • Philipp M, Hein L (2004) Adrenergic receptor knockout mice:distinct functions of 9 receptor subtypes. Pharmacol Ther 101:65-74

    CAS  PubMed  Google Scholar 

  • Piascik MT, Perez DM (2001) α1 -adrenergic receptors:new insights and directions. J Exp Pharmacol Ther 298:403-10

    CAS  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind A, Hokfelt T (1994) Distribution of α1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252-68

    CAS  PubMed  Google Scholar 

  • Porter AC, Bymaster FP, DeLapp NW, Yamada M, Wess J, Hamilton SE, Nathanson NM, Felder CC (2002) M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res 944:82-9

    CAS  PubMed  Google Scholar 

  • Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both β1 - and β2 -adrenergic receptors. J Biol Chem 274:16701-8

    CAS  PubMed  Google Scholar 

  • Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP, Jr., Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse β1 -adrenergic receptor gene:developmental and cardiovascular effects. Proc Natl Acad Sci USA 93:7375-80

    CAS  PubMed  Google Scholar 

  • Rokosh DG, Simpson PC (2002) Knockout of the α1A/C -adrenergic receptor subtype:the α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99:9474-9

    CAS  PubMed  Google Scholar 

  • Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG, Lynch KR (1996) Distribution of α2C -adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:135-65

    CAS  PubMed  Google Scholar 

  • Sadalge A, Coughlin L, Fu H, Wang B, Valladares O, Valentino R, Blendy JA (2003) α1D Adrenoceptor signaling is required for stimulus induced locomotor activity. Mol Psychiatry 8:664-72

    CAS  PubMed  Google Scholar 

  • Salomon L, Lanteri C, Glowinski J, Tassin JP (2006) Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc Natl Acad Sci USA 103:7476-81

    CAS  PubMed  Google Scholar 

  • Sawamura S, Kingery WS, Davies MF, Agashe GS, Clark JD, Kobilka BK, Hashimoto T, Maze M (2000) Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J Neurosci 20:9242-51

    CAS  PubMed  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K (2001a) α2 -adrenoceptors modulating neuronal serotonin release:a study in α2 -adrenoceptor subtype-deficient mice. Br J Pharmacol 132:925-33

    CAS  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K (2001b) Stimulation frequency-noradrenaline release relationships examined in α2A -, α2B - and α2C -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:321-8

    CAS  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K, Blandizzi C (2002) α2 -adrenoceptors in the enteric nervous system:a study in α2A -adrenoceptor-deficient mice. Br J Pharmacol 135:697-704

    CAS  PubMed  Google Scholar 

  • Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT, Jr. (1994) Distribution of α2 -adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21:133-49

    CAS  PubMed  Google Scholar 

  • Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the α2C -adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 68:2277-85

    CAS  PubMed  Google Scholar 

  • Schelb V, Gobel I, Khairallah L, Zhou H, Cox SL, Trendelenburg AU, Hein L, Starke K (2001) Postnatal development of presynaptic receptors that modulate noradrenaline release in mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:359-71

    CAS  Google Scholar 

  • Shapiro MS, Loose MD, Hamilton SE, Nathanson NM, Gomeza J, Wess J, Hille B (1999) Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca2+ channels by using knockout mice. Proc Natl Acad Sci USA 96:10899-904

    CAS  PubMed  Google Scholar 

  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals:a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325-95

    CAS  PubMed  Google Scholar 

  • Slutsky I, Wess J, Gomeza J, Dudel J, Parnas I, Parnas H (2003) Use of knockout mice reveals involvement of M2 -muscarinic receptors in control of the kinetics of acetylcholine release. J Neurophysiol 89:1954-67

    CAS  PubMed  Google Scholar 

  • Spreng M, Cotecchia S, Schenk F (2001) A behavioral study of α1B adrenergic receptor knockout mice:increased reaction to novelty and selectively reduced learning capacities. Neurobiology of learning and memory 75:214-29

    CAS  PubMed  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade:focus on α2 -adrenoceptors. J Neurochem 78:685-93

    CAS  PubMed  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864-89

    CAS  PubMed  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M2 and M4 receptor knockout mice:muscarinic receptor function in cardiac and smooth muscle in vitro. J Exp Pharmacol Ther 292:877-85

    CAS  Google Scholar 

  • Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765-76

    CAS  PubMed  Google Scholar 

  • Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997) The α2A adrenergic receptor subtype mediates spinal analgesia evoked by α2 agonists and is necessary for spinal adrenergicopioid synergy. J Neurosci 17:7157-65

    CAS  PubMed  Google Scholar 

  • Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the β3 -adrenergic receptor gene. J Biol Chem 270:29483-92

    CAS  PubMed  Google Scholar 

  • Szot P, Lester M, Laughlin ML, Palmiter RD, Liles LC, Weinshenker D (2004) The anticonvulsant and proconvulsant effects of α2 -adrenoreceptor agonists are mediated by distinct populations of α2A -adrenoreceptors. Neuroscience 126:795-803

    CAS  PubMed  Google Scholar 

  • Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR (1996) Distribution of α2A -adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:111-34

    CAS  PubMed  Google Scholar 

  • Tan CM, Wilson MH, MacMillan LB, Kobilka BK, Limbird LE (2002) Heterozygous α2A - adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc Natl Acad Sci USA 99:12471-6

    CAS  PubMed  Google Scholar 

  • Tanoue A, Koba M, Miyawaki S, Koshimizu TA, Hosoda C, Oshikawa S, Tsujimoto G (2002) Role of the α1D -adrenergic receptor in the development of salt-induced hypertension. Hypertension 40:101-6

    CAS  PubMed  Google Scholar 

  • Tanoue A, Koshimizu TA, Shibata K, Nasa Y, Takeo S, Tsujimoto G (2003) Insights into α1 adrenoceptor function in health and disease from transgenic animal studies. Trends Endocrinol Metab 14:107-13

    CAS  PubMed  Google Scholar 

  • Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25:8141-9

    CAS  PubMed  Google Scholar 

  • Trendelenburg AU, Hein L, Gaiser EG, Starke K (1999) Occurrence, pharmacology and function of presynaptic α2 -autoreceptors in α2A/D -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 360:540-51

    CAS  Google Scholar 

  • Trendelenburg AU, Cox SL, Schelb V, Klebroff W, Khairallah L, Starke K (2000) Modulation of 3 H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and beta-adrenoceptors in mouse tissues. Br J Pharmacol 130:321-30

    CAS  PubMed  Google Scholar 

  • Trendelenburg AU, Klebroff W, Hein L, Starke K (2001a) A study of presynaptic α2 -autoreceptors in α2A/D -, α2B - and α2C -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 364:17-30.

    Google Scholar 

  • Trendelenburg AU, Norenberg W, Hein L, Meyer A, Starke K (2001b) α2 -adrenoceptor-mediated inhibition of cultured sympathetic neurons:changes in α2A/D -adrenoceptor-deficient mice. Naunyn Schmiedeberg’s Arch Pharmacol 363:110-19

    CAS  Google Scholar 

  • Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J (2003a) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release:a study with M2 and M4 -receptor-deficient mice. Br J Pharmacol 138:469-80

    CAS  Google Scholar 

  • Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003b) All three α2 adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn Schmiedeberg’s Arch Pharmacol 368:504-12

    CAS  Google Scholar 

  • Trendelenburg AU, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145:1153-9

    CAS  PubMed  Google Scholar 

  • Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2 , M4 and M2 /M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673-9

    CAS  PubMed  Google Scholar 

  • Uhlen S, Lindblom J, Johnson A, Wikberg JE (1997) Autoradiographic studies of central α2A and α2C -adrenoceptors in the rat using [3 H]MK912 and subtype-selective drugs. Brain Res 770:261-6

    CAS  PubMed  Google Scholar 

  • Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S (2005) M2 and M3 muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 146:98-108

    CAS  PubMed  Google Scholar 

  • Unno T, Matsuyama H, Izumi Y, Yamada M, Wess J, Komori S (2006) Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br J Pharmacol 149:1022-30

    CAS  PubMed  Google Scholar 

  • Vonend O, Habbel S, Stegbauer J, Roth J, Hein L, Rump LC (2007) α2A -adrenoceptors regulate sympathetic transmitter release in mice kidneys. Br J Pharmacol 150:121-7

    CAS  PubMed  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69-99

    CAS  PubMed  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice:novel phenotypes and clinical implications. Ann Rev Pharmacol Toxicol 44:423-50

    CAS  Google Scholar 

  • Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron 24:715-26

    CAS  PubMed  Google Scholar 

  • Wolfe BB, Yasuda RP (1995) Development of selective antisera for muscarinic cholinergic receptor subtypes. Ann NY Acad Sci 757:186-93

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204-12

    CAS  PubMed  Google Scholar 

  • Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific α1 - and β-adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330-7

    CAS  PubMed  Google Scholar 

  • Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol 289:G521-9

    CAS  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001a) Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98:14096-101

    CAS  Google Scholar 

  • Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J (2001b) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207-12

    CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors:distribution of M4 and M5 receptors in rat brain. Mol Pharmacol 43:149-57

    CAS  PubMed  Google Scholar 

  • Zhang C, Davies MF, Guo TZ, Maze M (1999) The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord. Anesthesiology 91:401-7

    Google Scholar 

  • Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002a) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709-17

    CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002b) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1 -M5 muscarinic receptor knock-out mice. J Neurosci 22:6347-52

    CAS  Google Scholar 

  • Zhou H, Meyer A, Starke K, Gomeza J, Wess J, Trendelenburg AU (2002) Heterogeneity of release-inhibiting muscarinic autoreceptors in heart atria and urinary bladder:a study with M2 and M4 -receptor-deficient mice. Naunyn-Schmiedeberg’s Arch Pharmacol 365:112-22

    CAS  Google Scholar 

  • Zhu QM, Lesnick JD, Jasper JR, MacLennan SJ, Dillon MP, Eglen RM, Blue DR, Jr. (1999) Cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N α2A -adrenoceptor transgenic mice. Br J Pharmacol 126:1522-30

    CAS  PubMed  Google Scholar 

  • Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM (2000) Overexpression of the α1B -adrenergic receptor causes apoptotic neurodegeneration:multiple system atrophy. Nature Med 6:1388-94

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilsbach, R., Hein, L. (2008). Presynaptic Metabotropic Receptors for Acetylcholine and Adrenaline/Noradrenaline. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_9

Download citation

Publish with us

Policies and ethics