Skip to main content

In Vitro and In Vivo Evidence of the Importance of Organic Anion Transporters (OATs) in Drug Therapy

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 201))

Abstract

Organic anion transporters 1-10 (OAT1-10) and the urate transporter 1 (URAT1) belong to the SLC22A gene family and accept a huge variety of chemically unrelated endogenous and exogenous organic anions including many frequently described drugs. OAT1 and OAT3 are located in the basolateral membrane of renal proximal tubule cells and are responsible for drug uptake from the blood into the cells. OAT4 in the apical membrane of human proximal tubule cells is related to drug exit into the lumen and to uptake of estrone sulfate and urate from the lumen into the cell. URAT1 is the major urate-absorbing transporter in the apical membrane and is a target for uricosuric drugs. OAT10, also located in the luminal membrane, transports nicotinate with high affinity and interacts with drugs. Major extrarenal locations of OATs include the blood–brain barrier for OAT3, the placenta for OAT4, the nasal epithelium for OAT6, and the liver for OAT2 and OAT7. For all transporters we provide information on cloning, tissue distribution, factors influencing OAT abundance, interaction with endogenous compounds and different drug classes, drug/drug interactions and, if known, single nucleotide polymorphisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aherne GW, Marks V, Mould GP et al (1978) The interaction between methotrexate and probenecid in man. Br J Pharmacol 63:369P

    CAS  PubMed  Google Scholar 

  • Ahn S-Y, Eraly SA, Tsigelny I, Nigam SK (2009) Interaction of organic cations with organic anion transporters. J Biol Chem 284:31422–31430

    CAS  PubMed  Google Scholar 

  • Alebouyeh M, Takeda M, Onozato ML et al (2003) Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci 93:430–436

    CAS  PubMed  Google Scholar 

  • Aleksunes LM, Augustine LM, Scheffer GL et al (2008) Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology 250:82–88

    CAS  PubMed  Google Scholar 

  • Anzai N, Miyazaki H, Noshiro R et al (2004) The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem 279:45942–45950

    CAS  PubMed  Google Scholar 

  • Anzai N, Jutabha P, Enomoto A et al (2005) Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther 315:534–544

    CAS  PubMed  Google Scholar 

  • Anzai N, Kanai Y, Endou H (2006) Organic anion transporter family: current knowledge. J Pharm Sci 100:411–426

    CAS  Google Scholar 

  • Aoki J, Saso N, Kato S et al (2008) Nitric oxide and peroxinitrite regulate transporter transcription in rat liver slices. Biol Pharm Bull 31:1882–1887

    CAS  PubMed  Google Scholar 

  • Apiwattanakul N, Sekine T, Chairoungdua A et al (1999) Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol 55:847–854

    CAS  PubMed  Google Scholar 

  • Asif AR, Steffgen J, Metten M et al (2005) Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch Eur J Physiol 450:88–95

    CAS  Google Scholar 

  • Aslamkhan AS, Han Y-H, Yang X-P et al (2003) Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol Pharm 63:590–596

    CAS  Google Scholar 

  • Aslamkhan AG, Thompson DM, Perry JL et al (2006) The flounder organic anion transporter (fOAT) has sequence, function and substrate specificity similar to both mammalian Oats 1 and 3. Am J Physiol Regul Integr Comp Physiol 291:R1773–R1780

    CAS  PubMed  Google Scholar 

  • Augustine LM, Markelewicz RJ, Boekelheide K, Cherrington NJ (2005) Xenobiotic and endobiotic transporter mRNA expression in the blood testis barrier. Drug Metab Dispos 33:182–189

    CAS  PubMed  Google Scholar 

  • Babu E, Takeda M, Narikawa S et al (2002a) Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol 88:69–76

    CAS  PubMed  Google Scholar 

  • Babu E, Takeda M, Narikawa S et al (2002b) Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta 1590:64–75

    CAS  PubMed  Google Scholar 

  • Bahn A, Prawitt D, Butler G et al (2000) Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun 275:623–630

    CAS  PubMed  Google Scholar 

  • Bahn A, Knabe M, Hagos Y et al (2002) Interaction of the metal chelator 2,3-dimercapto-1-propane sulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1). Mol Pharmacol 62:1128–1136

    CAS  PubMed  Google Scholar 

  • Bahn A, Ebbinghaus D, Ebbinghaus EG et al (2004) Expression studies and functional characterization of human organic anion transporter 1 isoforms. Drug Metab Dispos 32:424–430

    CAS  PubMed  Google Scholar 

  • Bahn A, Ljubojevic M, Lorenz H et al (2005) Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol Cell Physiol 289:C1075–C1084

    CAS  PubMed  Google Scholar 

  • Bahn A, Hagos Y, Reuter S et al (2008) Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem 283:16332–16341

    CAS  PubMed  Google Scholar 

  • Bakhiya N, Bahn A, Burckhardt G, Wolff NA (2003) Human organic anion transporter 3 (hOAT3) can operate as an exchanger accepting urate as a substrate. Cell Physiol Biochem 13:249–256

    CAS  PubMed  Google Scholar 

  • Bakhiya N, Batke M, Laake J et al (2007) Directing role of organic anion transporters in the excretion of mercapturic acids of alkylated polycyclic hydrocarbons. Drug Metab Dispos 35:1824–1831

    CAS  PubMed  Google Scholar 

  • Bakhiya N, Arlt VM, Bahn A et al (2009) Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology 264:74–79

    CAS  PubMed  Google Scholar 

  • Barros SA, Srimaroeng C, Perry JL et al (2009) Activation of protein kinase Cζ increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport. J Biol Chem 284:2672–2679

    CAS  PubMed  Google Scholar 

  • Beéry E, Middel P, Bahn A et al (2003) Molecular evidence of organic ion transporters in the rat adrenal cortex with adrenocorticotropin-regulated zonal expression. Endocrinology 144:4519–4526

    PubMed  Google Scholar 

  • Beyer KH, Russo HF, Tillson EK et al (1951) ‘Benemid’, p-(di-n-propylsulfamyl)-benzoic acid: its renal affinity and its elimination. Am J Physiol 166:625–649

    CAS  PubMed  Google Scholar 

  • Bhatnagar V, Xu G, Hamilton BA et al (2006) Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). J Hum Genet 51:575–580

    CAS  PubMed  Google Scholar 

  • Bleasby K, Hall LA, Perry JL et al (2005) Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J Pharmacol Exp Ther 314:923–931

    CAS  PubMed  Google Scholar 

  • Bleasby K, Castle JC, Robert CJ et al (2006) Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36:963–988

    CAS  PubMed  Google Scholar 

  • Brady KP, Dushkin H, Förnzler D et al (1999) A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56:254–261

    CAS  PubMed  Google Scholar 

  • Brandoni A, Quaglia NB, Torres AM (2003) Compensation increase in organic anion secretion in rats with acute biliary obstruction: role of the renal organic anion transporter 1. Pharmacology 68:57–63

    CAS  PubMed  Google Scholar 

  • Brandoni A, Anzai N, Kanai Y et al (2006a) Renal elimination of p-aminohippurate (PAH) in response to three days of biliary obstruction in the rat. The role of OAT1 and OAT3. Biochim Biophys Acta 1762:673–681

    CAS  PubMed  Google Scholar 

  • Brandoni A, Villar SR, Picena JC et al (2006b) Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology 43:1092–1110

    CAS  PubMed  Google Scholar 

  • Brown GR (1993) Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 24:289–300

    CAS  PubMed  Google Scholar 

  • Buist SCN, Klaassen CD (2004) Rat and mouse differences in gender-predominant expression of organic anion transporter (Oat1-3, Slc22a6-8) mRNA levels. Drug Metab Dispos 32:620–625

    CAS  PubMed  Google Scholar 

  • Buist SCN, Cherrington NJ, Choudhuri S et al (2002) Gender-specific and developmental influences on the expression of rat organic anion transporters. J Pharmacol Exp Ther 301:145–151

    CAS  PubMed  Google Scholar 

  • Buist SCN, Cherrington NJ, Klaassen CD (2003) Endocrine regulation of renal organic anion transporters. Drug Metab Dispos 31:559–564

    CAS  PubMed  Google Scholar 

  • Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158

    CAS  PubMed  Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    CAS  PubMed  Google Scholar 

  • Burckhardt BC, Brai S, Wallis S et al (2003) Transport of cimetidine by flounder and human renal organic anion transporter 1. Am J Physiol Renal Physiol 284:F503–F509

    CAS  PubMed  Google Scholar 

  • Cha SH, Sekine T, Kusuhara H et al (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 275:4507–4512

    CAS  PubMed  Google Scholar 

  • Cha SH, Sekine T, Fukushima J-I et al (2001) Identification and characterization of human organic anion transporter 3 expressing predominantely in the kidney. Mol Pharm 59:1277–1286

    CAS  Google Scholar 

  • Cha SH, Kim HP, Jung N-H et al (2002) Down-regulation of organic anion transporter 2 mRNA expression by nitric oxide in primary cultured rat hepatocytes. IUBMB Life 54:129–135

    CAS  PubMed  Google Scholar 

  • Chen J, Terada T, Ogasawara K et al (2008) Adaptive responses of renal organic anion transporter 3 (OAT3). Am J Physiol Renal Physiol 295:F247–F252

    CAS  PubMed  Google Scholar 

  • Cheng Q, Aleksunes LM, Manautou JE et al (2008) Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharm 5:77–91

    CAS  PubMed  Google Scholar 

  • Cheong HI, Kang JH, Lee JH et al (2005) Mutational analysis of idiopathic renal hypouricemia. Pediatr Nephrol 20:886–890

    PubMed  Google Scholar 

  • Cherrington NJ, Slitt AL, Li N, Klaassen CD (2004) Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos 32:734–741

    CAS  PubMed  Google Scholar 

  • Choudhuri S, Cherrington NJ, Li N, Klaassen CD (2003) Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus. Drug Metab Dispos 31:1337–1345

    CAS  PubMed  Google Scholar 

  • Chu X-Y, Bleasby K, Yabut J et al (2007) Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther 321:673–683

    CAS  PubMed  Google Scholar 

  • Cihlar T, Ho ES (2000) Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem 283:49–55

    CAS  PubMed  Google Scholar 

  • Cihlar T, Lin DC, Pritchard JB et al (1999) The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharm 56:570–580

    CAS  Google Scholar 

  • Cropp CD, Komori T, Shima JE et al (2008) Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol 73:1151–1158

    CAS  PubMed  Google Scholar 

  • Cundy KC, Petty BC, Flaherty J et al (1995) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1251

    CAS  PubMed  Google Scholar 

  • Cundy KC, Li Z-H, Lee WA (1996) Effect of probenecid on the distribution, metabolism, and excretion of cidofovir in rabbits. Drug Metab Dispos 24:315–321

    CAS  PubMed  Google Scholar 

  • Cunningham RF, Israeli ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151

    CAS  PubMed  Google Scholar 

  • Cunningham R, Brazie M, Kanumuru S et al (2007) Sodium-hydrogen exchanger regulatory factor-1 interacts with mouse urate transporter 1 to regulate renal proximal tubule uric acid transport. J Am Soc Nephrol 18:1419–1425

    CAS  PubMed  Google Scholar 

  • Dan H, Peng R-X, Ao Y, Liu Y-H (2008) Segment-specific proximal tubule injury in tripterygium glycosides intoxicated rats. J Biochem Mol Toxicol 22:422–428

    CAS  PubMed  Google Scholar 

  • Debelle FD, Vanherweghem J-L, Nortier JL (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int 74:158–169

    CAS  PubMed  Google Scholar 

  • Deguchi T, Kusuhara H, Takadate A et al (2004) Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int 65:162–174

    CAS  PubMed  Google Scholar 

  • Di Giusto G, Anzai N, Endou H, Torres AM (2008) Elimination of organic anions in response to an early stage of renal ischemia-reperfusion in the rat: role of basolateral plasma transporters and cortical renal blood flow. Pharmacology 81:127–136

    PubMed  Google Scholar 

  • Di Giusto G, Anzai N, Ruiz ML et al (2009) Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride. Arch Toxicol 83:889–897

    Google Scholar 

  • Dreisbach AW (2009) The influence of chronic renal failure on drug metabolism and transport. Clin Pharmacol Ther 86:553–556

    CAS  PubMed  Google Scholar 

  • Dreisbach AW, Lertora JJL (2008) The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol 4:1065–1074

    CAS  PubMed  Google Scholar 

  • Dresser MJ, Leabman MK, Giacomini KM (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci 90:397–421

    CAS  PubMed  Google Scholar 

  • Ekaratanawong S, Anzai N, Jutabha P et al (2004) Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharm Sci 94:297–304

    CAS  Google Scholar 

  • Enomoto A, Endou H (2005) Roles of organic anion transporters (OATs) and urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol 9:195–205

    CAS  PubMed  Google Scholar 

  • Enomoto A, Niwa T (2007) Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial 11:327–331

    Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A et al (2002a) Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  PubMed  Google Scholar 

  • Enomoto A, Takeda M, Shimoda S et al (2002b) Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther 301:797–802

    CAS  PubMed  Google Scholar 

  • Enomoto A, Takeda M, Tojo A et al (2002c) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13:1711–1720

    CAS  PubMed  Google Scholar 

  • Enomoto A, Takeda M, Taki K et al (2003) Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur J Pharmacol 466:13–20

    CAS  PubMed  Google Scholar 

  • Eraly SA, Blantz RC, Bhatnagar V, Nigam SK (2003a) Novel aspects of renal organic anion transporters. Curr Opin Nephrol Hypertens 12:551–558

    CAS  PubMed  Google Scholar 

  • Eraly SA, Hamilton BA, Nigam SK (2003b) Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun 300:333–342

    CAS  PubMed  Google Scholar 

  • Eraly SA, Vallon V, Vaughn DA et al (2006) Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem 281:5072–5083

    CAS  PubMed  Google Scholar 

  • Erdman AR, Mangravite LM, Urban TJ et al (2005) The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am J Physiol Renal Physiol 290:905–912

    Google Scholar 

  • Feng B, Dresser MJ, Shu Y et al (2001) Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40:5511–5520

    CAS  PubMed  Google Scholar 

  • Feng B, Shu Y, Giacomini KM (2002) Role of aromatic transmembrane residues of the organic anion transporter, rOAT3, in substrate recognition. Biochemistry 41:8941–8947

    CAS  PubMed  Google Scholar 

  • Frenia ML, Long KS (1992) Methotrexate and nonsteroidal anti-inflammatory drug interactions. Ann Pharmacother 26:342–343

    Google Scholar 

  • Fujita T, Brown C, Carlson EJ et al (2005) Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenet Genomics 15:201–209

    CAS  PubMed  Google Scholar 

  • George RL, Wu X, Fei FH et al (1999) Molecular cloning and characterization of a polyspecific organic anion transporter from Caenorhabditis elegans. J Pharmacol Exp Ther 291:596–603

    CAS  PubMed  Google Scholar 

  • Gopal E, Fei Y-J, Sugawara M et al (2004) Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J Biol Chem 279:44533–44532

    Google Scholar 

  • Groves CE, Suhre WB, Cherrington NJ, Wright SH (2006) Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. J Pharmacol Exp Ther 316:743–752

    CAS  PubMed  Google Scholar 

  • Habu Y, Yano I, Okuda M et al (2005) Restored expression and activity of organic ion transporters rOAT1, rOAT3 and rOCT2 after hyperuricemia in the rat kidney. Biochem Pharmacol 69:993–999

    CAS  PubMed  Google Scholar 

  • Hagos Y, Bahn A, Asif AR et al (2002) Cloning of the pig renal organic anion transporter 1 (pOAT1). Biochimie 84:1221–1224

    CAS  PubMed  Google Scholar 

  • Hagos Y, Braun IM, Krick W et al (2005) Functional expression of pig renal organic anion transporter 3 (pOAT3). Biochimie 87:421–424

    CAS  PubMed  Google Scholar 

  • Hagos Y, Bahn A, Vormfelde SV et al (2007a) Torasemide transport by organic anion transporters contributes to hyperuricemia. J Am Soc Nephrol 18:3101–3109

    CAS  PubMed  Google Scholar 

  • Hagos Y, Stein D, Ugele B et al (2007b) Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol 18:430–439

    CAS  PubMed  Google Scholar 

  • Hagos Y, Krick W, Braulke T et al (2008) Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflügers Arch Eur J Physiol 457:223–231

    CAS  Google Scholar 

  • Hasannejad H, Takeda M, Taki K et al (2003) Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther 308:1021–1029

    PubMed  Google Scholar 

  • Hasegawa M, Kusuhara H, Sugiyama D et al (2002) Functional involvement of rat organic anion transporter 3 (rOAT3; Slc22a8) in the uptake of organic anions. J Pharmacol Exp Ther 300:746–753

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Kusuhara H, Endou H, Sugiyama Y (2003) Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J Pharmacol Exp Ther 305:1087–1097

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Narikawa S, Huang X-L et al (2004) Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab Dispos 32:1096–1102

    CAS  PubMed  Google Scholar 

  • Hediger MA, Johnson RJ, Miyazaki H, Endou H (2005) Molecular physiology of urate transport. Physiology 20:125–133

    CAS  PubMed  Google Scholar 

  • Hilgendorf C, Ahlin G, Seithel A et al (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340

    CAS  PubMed  Google Scholar 

  • Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    CAS  PubMed  Google Scholar 

  • Ho ES, Lin DC, Mendel DB, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11:383–393

    CAS  PubMed  Google Scholar 

  • Höcherl K, Schmidt C, Bucher M (2009) COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex. Kidney Int 75:373–380

    PubMed  Google Scholar 

  • Homeida M, Roberts C, Branch RA (1977) Influence of probenecid and spironolacton on furosemide kinetics and dynamics in man. Clin Pharmacol Ther 22:402–409

    CAS  PubMed  Google Scholar 

  • Honari J, Blair AD, Cutler RE (1977) Effects of probenecid on furosemide kinetics and natriuresis in man. Clin Pharmacol Ther 22:395–401

    CAS  PubMed  Google Scholar 

  • Hong M, Zhou F, You G (2004) Critical amino acid residues in transmembrane domain 1 of human organic anion transporter 1 OAT1. J Biol Chem 279:31478–31482

    CAS  PubMed  Google Scholar 

  • Hong M, Tanaka K, Pan Z et al (2007) Determination of the external loops and the cellular orientation of the N- and the C-termini of the human organic anion transporter hOAT1. Biochem J 401:515–520

    CAS  PubMed  Google Scholar 

  • Hosoyamada M, Sekine T, Kanai Y, Endou H (1999) Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol Renal Physiol 276:F122–F128

    CAS  Google Scholar 

  • Hosoyamada M, Ichida K, Enomoto A et al (2004) Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol 15:261–268

    CAS  PubMed  Google Scholar 

  • Hu S, Franke RM, Filipski KK et al (2008) Interaction of imatinib with human organic ion carriers. Clin Cancer Res 14:3141–3148

    CAS  PubMed  Google Scholar 

  • Huang Q, Dunn RT, Jayadev S et al (2001) Assessmant of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63:196–207

    CAS  PubMed  Google Scholar 

  • Ichida K, Hosoyamada M, Kimura H et al (2003) Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int 63:143–155

    CAS  PubMed  Google Scholar 

  • Ichida K, Hosoyamada M, Hisatome I et al (2004) Clinical and molecular analysis of patients with renal hypouricemia in Japan – influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 15:164–173

    PubMed  Google Scholar 

  • Imaoka T, Kusuhara H, Adachi-Akahane S et al (2004) The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J Am Soc Nephrol 15:2012–2022

    CAS  PubMed  Google Scholar 

  • Islinger F, Gekle M, Wright SH (2001) Interaction of 2, 3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J Pharmacol Exp Ther 299:741–747

    CAS  PubMed  Google Scholar 

  • Iwanaga T, Kobayashi D, Hirayama M et al (2005) Involvement of uric acid transporter in increased clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos 33:1791–1795

    CAS  PubMed  Google Scholar 

  • Iwanaga T, Sato M, Maeda T et al (2007) Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J Pharmacol Exp Ther 320:211–217

    CAS  PubMed  Google Scholar 

  • Jacobsson JA, Haitina T, Lindblom J, Fredriksson R (2007) Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 90:595–609

    CAS  PubMed  Google Scholar 

  • Jariyawat S, Sekine T, Takeda M et al (1999) The interaction and transport of ß-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 290:672–677

    CAS  PubMed  Google Scholar 

  • Ji L, Masuda S, Saito H, Inui K (2002) Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int 62:514–524

    CAS  PubMed  Google Scholar 

  • Jigorel E, Le Vee M, Boursier-Neyret C et al (2006) Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos 34:1756–1763

    CAS  PubMed  Google Scholar 

  • Jin MJ, Han HK (2006) Interaction of zalcitabine with human organic anion transporter 1. Pharmazie 61:491–492

    CAS  PubMed  Google Scholar 

  • Jung KY, Takeda M, Kim DK et al (2001) Characterization of ochratoxin A transport by human organic anion transporters. Life Sci 69:2123–2135

    CAS  PubMed  Google Scholar 

  • Jung KY, Takeda M, Shimoda M et al. (2002) Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci 70:1861–1874

    Google Scholar 

  • Kaler G, Truong DM, Khandelwal A et al (2007a) Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. J Biol Chem 282:23841–23853

    CAS  PubMed  Google Scholar 

  • Kaler G, Truong DM, Sweeney DE et al (2007b) Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun 351:872–876

    Google Scholar 

  • Kato Y, Kuge K, Kusuhara H et al (2002) Gender difference in the urinary excretion of organic anions in rats. J Pharmacol Exp Ther 302:483–489

    CAS  PubMed  Google Scholar 

  • Kato Y, Yoshida K, Watanabe C et al (2004) Screening of the interaction between xenobiotic transporters and PDZ proteins. Pharm Res 21:1886–1894

    CAS  PubMed  Google Scholar 

  • Keller T, Schwarz D, Bernhard F et al (2008) Cell free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry 47:4552–4564

    CAS  PubMed  Google Scholar 

  • Khamdang S, Takeda M, Noshiro R et al (2002) Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 303:534–539

    CAS  PubMed  Google Scholar 

  • Khamdang S, Takeda M, Babu E et al (2003) Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol 465:1–7

    CAS  PubMed  Google Scholar 

  • Khamdang S, Takeda M, Shimoda M (2004) Interaction of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci 94:197–202

    CAS  PubMed  Google Scholar 

  • Kikuchi R, Kusuhara H, Sugiyama D, Sugiyama Y (2003) Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier. J Pharmacol Exp Ther 306:51–58

    CAS  PubMed  Google Scholar 

  • Kikuchi R, Kusuhara H, Hattori N et al (2006) Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1α/β and DNA methylation. Mol Pharm 70:887–896

    CAS  Google Scholar 

  • Kikuchi R, Kusuhara H, Hattori N et al (2007) Regulation of the tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1α/β and DNA methylation. Mol Pharm 72:1619–1925

    CAS  Google Scholar 

  • Kim G-H, Na KY, Kim S-Y et al (2003) Up-regulation of organic anion transporter 1 protein is induced by chronic furosemide or hydrochlorothiazide infusion in rat kidney. Nephrol Dial Transplant 18:1505–1511

    PubMed  Google Scholar 

  • Kimura H, Takeda M, Narikawa S et al (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293–298

    CAS  PubMed  Google Scholar 

  • Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    CAS  PubMed  Google Scholar 

  • Kimura T, Perry J, Anzai N et al (2007) Development and characterization of immobilized human organic anion transporter based liquid chromatography stationary phase: hOAT1 and hOAT2. J Chromatogr B 15:267–271

    Google Scholar 

  • Kobayashi Y, Hirokawa N, Ohshiro N et al (2002a) Differential gene expression of organic anion transporters in male and female rats. Biochem Biophys Res Commun 290:482–487

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohshiro N, Shibusawa T et al (2002b) Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol Pharmacol 62:7–14

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohshiro N, Tsuchiya A et al (2004) Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOAT3): further substrate specificity of mOAT3. Drug Metab Dispos 32:479–483

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohshiro N, Sakai R et al (2005) Transport mechanism and substrate specificity of human organic anion transporter 2 (hOAT2[SLC22A7]). J Pharm Pharmacol 57:573–578

    CAS  PubMed  Google Scholar 

  • Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflügers Arch Eur J Physiol 447:666–676

    CAS  Google Scholar 

  • Kojima R, Sekine T, Kawachi M et al (2002) Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J Am Soc Nephrol 13:848–857

    CAS  PubMed  Google Scholar 

  • Komoda F, Sekine T, Inatomi J et al (2004) The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 19:728–733

    PubMed  Google Scholar 

  • Kusuhara H, Sekine T, Utsunomiya-Tate N et al (1999) Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 274:13675–13680

    CAS  PubMed  Google Scholar 

  • Kuze K, Graves P, Leahy A et al (1999) Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem 274:1519–1524

    CAS  PubMed  Google Scholar 

  • Kwak J-O, Kim H-W, Oh K-J et al (2005a) Characterization of mouse organic anion transporter 5 as a renal steroid sulfate transporter. J Steroid Biochem Mol Biol 97:369–375

    CAS  PubMed  Google Scholar 

  • Kwak J-O, Kim H-W, Oh K-J et al (2005b) Co-localization and interaction of organic anion transporter 1 with caveolin-2 in rat kidney. Exp Mol Med 37:204–212

    CAS  PubMed  Google Scholar 

  • Kwon O, Hong S-M, Blouch K (2007) Alteration in renal organic anion transporter 1 after ischemia/reperfusion in cadaveric renal allografts. J Histochem Cytochem 55:575–584

    CAS  PubMed  Google Scholar 

  • Lacy SA, Hitchcock MJM, Lee WA et al (1998) Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol Sci 44:97–106

    CAS  PubMed  Google Scholar 

  • Lalezari JP, Drew WL, Glutzer E et al (1995) (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl] cytosine (Cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue. J Infect Dis 171:788–796

    CAS  PubMed  Google Scholar 

  • Leazer TM, Klaassen CD (2003) The presence of xenobiotic transporters in the placenta. Drug Metab Dispos 31:153–167

    CAS  PubMed  Google Scholar 

  • Lee W, Kim RB (2004) Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 44:137–166

    CAS  PubMed  Google Scholar 

  • Li T, Walsh JR, Ghishan FK, Bai L (2004) Molecular cloning and characterization of a human urate transporter (hURAT1) gene promoter. Biochim Biophys Acta 1681:53–58

    CAS  PubMed  Google Scholar 

  • Li M, Anderson GD, Wang J (2006) Drug–drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2:505–532

    CAS  PubMed  Google Scholar 

  • Li Y, Sato M, Yanagisawa Y et al (2008) Effects of angiotensin II receptor blockers on renal handling of uric acid in rats. Drug Metab Pharmacokinet 23:263–270

    PubMed  Google Scholar 

  • Ljubojevic M, Herak-Kramberger CM, Hagos Y et al (2004) Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol 287:F124–F138

    CAS  PubMed  Google Scholar 

  • Ljubojevic M, Balen D, Breljak D et al (2007) Renal expression of organic anion transporter Oat2 in rats and mice is regulated by sex hormones. Am J Physiol Renal Physiol 292:F361–F372

    CAS  PubMed  Google Scholar 

  • Lopez-Nieto CE, You GF, Bush KT et al (1997) Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 272:6471–6478

    CAS  PubMed  Google Scholar 

  • Lu R, Chan BS, Schuster VL (1999) Cloning of the human PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am J Physiol Renal Physiol 276:F295–F303

    CAS  Google Scholar 

  • Maher JM, Slitt AL, Callaghan TN et al (2006) Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1alpha. Biochem Pharmacol 72:512–522

    CAS  PubMed  Google Scholar 

  • Manautou JE, Nowicki MT, Aleksunes LM et al (2008) Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett 2:11–17

    PubMed  Google Scholar 

  • Matsumoto S, Yoshida K, Ishiguro N et al (2007) Involvement of rat and human organic anion transporter 3 in the renal tubular secretion of topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]. J Pharmacol Exp Ther 322:1246–1252

    CAS  PubMed  Google Scholar 

  • Matsuzaki T, Watanabe H, Yoshitome K et al (2007) Downregulation of organic anion transporters in rat kidney under ischemia/reperfusion-induced acute renal failure. Kidney Int 71:539–547

    CAS  PubMed  Google Scholar 

  • Minematsu T, Hashimoto T, Aoki T et al (2008) Role of the organic anion transporters in the pharmacokinetics of zonampanel, and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, in rats. Drug Metab Dispos 36:1496–1504

    CAS  PubMed  Google Scholar 

  • Miyazaki H, Anzai N, Ekaratanawong S et al (2005) Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol 16:3498–3506

    CAS  PubMed  Google Scholar 

  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55:425–461

    CAS  PubMed  Google Scholar 

  • Monte JC, Nagle MA, Eraly SA, Nigam SK (2004) Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun 323:429–436

    CAS  PubMed  Google Scholar 

  • Mori K, Ogawa Y, Ebihara K et al (1997) Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett 417:371–374

    CAS  PubMed  Google Scholar 

  • Mori S, Takanaga H, Ohtsuki S et al (2003) Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23:432–440

    CAS  PubMed  Google Scholar 

  • Mori S, Ohtsuki S, Takanaga H (2004) Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem 90:931–941

    CAS  PubMed  Google Scholar 

  • Morita N, Kusuhara H, Sekine T et al (2001) Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. J Pharmacol Exp Ther 298:1179–1184

    CAS  PubMed  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H et al (2002) Gene expression levels and immunolocalization of organic ion transporters in human kidney. J Am Soc Nephrol 13:866–874

    CAS  PubMed  Google Scholar 

  • Motohashi H, Uwai Y, Hiramoto K et al (2004) Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur J Pharmacol 503:25–30

    CAS  PubMed  Google Scholar 

  • Motojima M, Hosokawa A, Yamato H et al (2002) Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol 135:555–563

    CAS  PubMed  Google Scholar 

  • Mulato AS, Ho ES, Cihlar T (2000) Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther 295:10–15

    CAS  PubMed  Google Scholar 

  • Nagata Y, Kusuhara H, Endou H, Sugiyama Y (2002) Expression and functional characterization of rat organic anion transporter 3 (rOAT3) in the choroid plexus. Mol Pharmacol 61:982–988

    CAS  PubMed  Google Scholar 

  • Nakagomi-Hagihara R, Nakai D, Tokiu T (2007) Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica 37:416–426

    CAS  PubMed  Google Scholar 

  • Nakajima N, Sekine T, Cha SH et al (2000) Developmental changes in multispecific organic anion transporter 1 expression in rat kidney. Kidney Int 57:1608–1616

    CAS  PubMed  Google Scholar 

  • Nakakariya M, Shima Y, Mitsuoka K et al (2009) Organic anion transporter OAT1 is involved in renal handling of citrullin. Am J Physiol Renal Physiol 297:F71–F79

    CAS  PubMed  Google Scholar 

  • Naud J, Michaud J, Boisvert C et al (2007) Down-regulation of intestinal drug transporters in chronic renal failure in rats. J Pharmacol Exp Ther 320:978–985

    CAS  PubMed  Google Scholar 

  • Nilwarangkoon S, Anzai N, Shiraya K (2007) Role of mouse organic anion transporter 3 (mOAT3) as a basolateral prostaglandin E2 transport pathway. J Pharmacol Sci 103:48–55

    CAS  PubMed  Google Scholar 

  • Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter families. Drug Metab Pharmacokinet 20:452–477

    CAS  PubMed  Google Scholar 

  • Nishiwaki T, Daigo Y, Tamari M et al (1998) Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORTCL4, bearing homology to organic-cation transporters. Cytogenet Cell Genet 83:251–255

    CAS  PubMed  Google Scholar 

  • Nishizato Y, Ieiri I, Suzuki H et al (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:554–565

    CAS  PubMed  Google Scholar 

  • Nozaki Y, Kusuhara H, Endou H, Sugiyama Y (2004) Quantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporter and reduced folate transporter. J Pharmacol Exp Ther 309:226–234

    CAS  PubMed  Google Scholar 

  • Nozaki Y, Kusuhara H, Kondo T et al (2007a) Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices. J Pharmacol Exp Ther 321:362–369

    CAS  PubMed  Google Scholar 

  • Nozaki Y, Kusuhara H, Kondo T et al (2007b) Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther 322:1162–1170

    CAS  PubMed  Google Scholar 

  • Obermayr RP, Temml C, Gutjahr G et al (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413

    PubMed  Google Scholar 

  • Ogasawara K, Terada T, Asaka J-I et al (2006) Human organic anion transporter 3 gene is regulated constitutively and inducibly via a cAMP-responsive element. J Pharmacol Exp Ther 319:317–322

    CAS  PubMed  Google Scholar 

  • Ogasawara K, Terada T, Asaka J-I et al (2007) Hepatocyte nuclear factor-4α regulates the human organic anion transporter 1 gene in the kidney. Am J Physiol Renal Physiol 292:F1819–F1826

    CAS  PubMed  Google Scholar 

  • Ogasawara K, Terada T, Motohashi H et al (2008) Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet 53:607–614

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Asaba H, Takanaga H et al (2002) Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 83:57–66

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Kikkawa T, Mori S et al (2004) Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J Pharmacol Exp Ther 309:1273–1281

    CAS  PubMed  Google Scholar 

  • Overbosch D, van Gulpen C, Herman J, Mattie H (1988) The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol 25:51–58

    CAS  PubMed  Google Scholar 

  • Pavlova A, Sakurai H, Leclercq B et al (2000) Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 278:F635–F643

    CAS  PubMed  Google Scholar 

  • Perry JL, Dembla-Rajpal N, Hall LA, Pritchard JB (2006) A three-dimensional model of human organic anion transporter 1. Aromatic amino acids required for substrate transport. J Biol Chem 281:38071–38079

    CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowics A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99

    Google Scholar 

  • Pombrio JM, Giangreco A, Li L et al (2001) Mercapturic acids (N-acetylcysteine-S-conjugates) as endogenous substrates for the renal organic anion transporter 1. Mol Pharmacol 60:1091–1099

    CAS  PubMed  Google Scholar 

  • Popowski K, Eloranta JJ, Saborowski M et al (2005) The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4α and suppressed by bile acids. Mol Pharm 67:1629–1638

    CAS  Google Scholar 

  • Price KL, Sautin YY, Long DA et al (2006) Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol 17:1791–1795

    CAS  PubMed  Google Scholar 

  • Pritchard JB, Sweet DH, Miller DS, Walden R (1999) Mechanism of organic anion transport across the apical membrane of choroid plexus. J Biol Chem 274:33382–33387

    CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Hochman JH, Meng Y et al (2004) Renal elimination of a novel and potent αvβ3 integrin antagonist in animals. Xenobiotica 34:1059–1974

    CAS  PubMed  Google Scholar 

  • Race JE, Grassl SM, Williams WJ, Holtzmann EJ (1999) Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 255:508–514

    CAS  PubMed  Google Scholar 

  • Reid G, Wolff NA, Dautzenberg FM, Burckhardt G (1998) Cloning of a human renal p-aminohippurate transporter, hROAT. Kidney Blood Press Res 21:233–237

    CAS  PubMed  Google Scholar 

  • Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470

    CAS  PubMed  Google Scholar 

  • Rizwan AN, Krick W, Burckhardt G (2007) The chloride dependence of human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J Biol Chem 282:13402–13409

    CAS  PubMed  Google Scholar 

  • Saito H (2010) Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther 125(1):79–91, Epub 2009 Oct 24

    CAS  PubMed  Google Scholar 

  • Saji T, Kikuchi R, Kusuhara H et al (2008) Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 α/β. J Pharmacol Exp Ther 324:784–790

    CAS  PubMed  Google Scholar 

  • Sakurai Y, Motohashi H, Ueo H et al (2004) Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res 21:61–67

    CAS  PubMed  Google Scholar 

  • Sato M, Iwanaga T, Mamada H et al (2008) Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res 25:639–646

    CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M (2002) Short-term regulation of basolateral organic anion uptake in proximal tubular OK cells: EGF acts via MAPK, PLA2, and COX1. J Am Soc Nephrol 13:1981–1991

    CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M (2003) Short-term regulation of basolateral organic anion uptake in proximal tubular opossum kidney cells: prostaglandin E2 acts via receptor-mediated activation of protein kinase A. J Am Soc Nephrol 14:3017–3026

    CAS  PubMed  Google Scholar 

  • Sauvant C, Hesse D, Holzinger H et al (2004) Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Am J Physiol Renal Physiol 286:F774–F783

    CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M (2006) Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J Am Soc Nephrol 17:46–53

    CAS  PubMed  Google Scholar 

  • Schnabolk GW, Youngblood GL, Sweet DH (2006) Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). Am J Physiol Renal Physiol 291:F314–F321

    CAS  PubMed  Google Scholar 

  • Schneider R, Sauvant C, Betz B et al (2007) Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion of para-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol 292:F1599–F1605

    CAS  PubMed  Google Scholar 

  • Schneider R, Meusel M, Renker S et al (2009) Low-dose indomethacin after ischemic acute kidney injury prevents down regulation of Oat1/3 and improves renal outcome. Am J Physiol Renal Physiol 297:F1614–F1621

    CAS  PubMed  Google Scholar 

  • Schömig E, Spitzenberger F, Engelhardt M et al (1998) Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett 425:79–86

    PubMed  Google Scholar 

  • Sekine T, Watanabe N, Hosoyamada M et al (1997) Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 272:18526–18529

    CAS  PubMed  Google Scholar 

  • Sekine T, Cha SH, Tsuda N et al (1998) Identification of multispecific organic anion transporter 2 expressed predominantly in liver. FEBS Lett 429:179–182

    CAS  PubMed  Google Scholar 

  • Sekine T, Cha SH, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflügers Arch Eur J Physiol 440:337–350

    CAS  Google Scholar 

  • Shah MM, Tee JB, Meyer T et al (2009) The instructive role of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential ability to buffer ureteric bud branching defects. Am J Physiol Renal Physiol 297:F1330–F1341

    CAS  PubMed  Google Scholar 

  • Shibayama Y, Ushinohama K, Ikeda R et al (2006) Effect of methotrexate treatment on expression levels of multidrug resistance protein 2, breast cancer resistance protein and organic anion transporters Oat1, Oat2 and Oat3 in rats. Cancer Sci 96:1260–1266

    Google Scholar 

  • Shikano N, Kanai Y, Kawai K et al (2004) Transport of 99mTc-MAG3 via rat renal organic anion transporter 1. J Nucl Med 45:80–84

    CAS  PubMed  Google Scholar 

  • Shin HJ, Anzai N, Enomoto A et al (2007) Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45:1046–1055

    CAS  PubMed  Google Scholar 

  • Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    CAS  PubMed  Google Scholar 

  • Simonson GD, Vincent AC, Roberg KJ et al (1994) Molecular cloning and characterization of a novel liver-specific transport protein. J Cell Sci 7:1065–1072

    Google Scholar 

  • Soodvilai S, Chatsudthipong V, Evans KK et al (2004) Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol 287:F1021–1029

    CAS  PubMed  Google Scholar 

  • Soodvilai S, Wright SH, Dantzler WH, Chatsudthipong V (2005) Involvement of tyrosine kinase and PI3K in the regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol 289:F1057–F1064

    CAS  PubMed  Google Scholar 

  • Srimaroeng C, Chatsudthipong V, Aslamkhan AG, Pritchard JB (2005a) Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J Pharmacol Exp Ther 313:621–628

    CAS  PubMed  Google Scholar 

  • Srimaroeng C, Jutabha P, Pritchard JB et al (2005b) Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm Res 22:858–866

    CAS  PubMed  Google Scholar 

  • Srimaroeng C, Perry JL, Pritchard JB (2008) Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 38:889–935

    CAS  PubMed  Google Scholar 

  • Sugawara M, Mochizuki T, Takekuma Y, Miyazaki K (2005) Structure-activity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim Biophys Acta 1714:85–92

    CAS  PubMed  Google Scholar 

  • Sugiyama D, Kusuhara H, Shitara Y et al (2001) Characterization of the efflux transport of 17ß-estradiol-D-17ß-glucuronide from the brain across the blood–brain barrier. J Pharmacol Exp Ther 298:316–322

    CAS  PubMed  Google Scholar 

  • Sun W, Wu RR, van Poelje PD, Erion MD (2001) Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 283:417–423

    CAS  PubMed  Google Scholar 

  • Sweet DH (2005) Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol 204:198–215

    CAS  PubMed  Google Scholar 

  • Sweet DH, Wolff NA, Pritchard JB (1997) Expression cloning and characterization of ROAT1. J Biol Chem 272:30088–30095

    CAS  PubMed  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB et al (2002) Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 277:26934–26943

    CAS  PubMed  Google Scholar 

  • Sweet DH, Chan LMS, Walden R et al (2003) Organic anion transporter 3 [Slc22a8] is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am J Physiol Renal Physiol 284:F763–F768

    CAS  PubMed  Google Scholar 

  • Sweet DH, Eraly SA, Vaughn DA et al (2006) Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int 69:837–845

    CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Endou H et al (2005a) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315:337–345

    CAS  PubMed  Google Scholar 

  • Tahara H, Shono M, Kusuhara H et al (2005b) Molecular cloning and functional analysis of OAT1 and OAT3 from Cynomolgus monkey kidney. Pharm Res 22:647–660

    CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Chida M et al (2006a) Is the monkey an appropriate animal model to examine drug-drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H2 receptor antagonists. J Pharmacol Exp Ther 316:1187–1194

    CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Maeda K et al (2006b) Inhibition of OAT3-mediated renal uptake as a mechanism for drug–drug interaction between fexofenadine and probenecid. Drug Metab Dispos 34:743–747

    CAS  PubMed  Google Scholar 

  • Takeda M, Tojo A, Sekine T et al (1999) Role of organic anion transporter 1 (OAT1) in cephaloridine (CER9)-induced nephrotoxicity. Kidney Int 56:2128–2136

    CAS  PubMed  Google Scholar 

  • Takeda M, Hosoyamada M, Cha SH et al (2000a) Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci 68:679–687

    CAS  PubMed  Google Scholar 

  • Takeda M, Sekine T, Endou H (2000b) Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3). Life Sci 67:1087–1093

    CAS  PubMed  Google Scholar 

  • Takeda M, Narikawa S, Hosoyamada M et al (2001) Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 419:113–120

    CAS  PubMed  Google Scholar 

  • Takeda M, Babu E, Narikawa S, Endou H (2002a) Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol 438:137–142, Corrigendum in Eur J Pharmacol 450:111

    CAS  PubMed  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S et al (2002b) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300:918–924

    CAS  PubMed  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S et al (2002c) Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 302:666–671

    CAS  PubMed  Google Scholar 

  • Takeda M, Noshiro R, Onozato ML et al (2004) Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur J Pharmacol 483:133–138

    CAS  PubMed  Google Scholar 

  • Tanaka K, Xu W, Zhou F, You G (2004) Role of glycosylation in the organic anion transporter 1. J Biol Chem 279:14961–14966

    CAS  PubMed  Google Scholar 

  • Terlouw SA, Masereeuw R, Russel FGM (2003) Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem Pharmacol 265:1393–1404

    Google Scholar 

  • Thyss A, Milano G, Kubar J et al (1986) Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 1:256–258

    CAS  PubMed  Google Scholar 

  • Tojo A, Sekine T, Nakjima N et al (1999) Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J Am Soc Nephrol 10:464–471

    CAS  PubMed  Google Scholar 

  • Torres AM (2008) Renal elimination of organic anions in cholestasis. World J Gastroenterol 14:6616–6621

    CAS  PubMed  Google Scholar 

  • Truong DM, Kaler G, Khandelwal A et al (2008) Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem 283:8654–8663

    CAS  PubMed  Google Scholar 

  • Tsuda M, Sekine T, Takeda M et al (1999) Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther 289:1301–1305

    CAS  PubMed  Google Scholar 

  • Tsuji A, Terasaki T, Tamai I, Takeda K (1990) In vivo evidence for carrier-mediated uptake of ß-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther 253:315–320

    CAS  PubMed  Google Scholar 

  • Ueo H, Motohashi H, Katsura T, Inui K-I (2005) Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol 70:1104–1113

    CAS  PubMed  Google Scholar 

  • Ueo H, Motohashi H, Inui K (2007) Cl-dependent up-regulation of human organic anion transporters: different effects on transport kinetics between hOAT1 and hOAT3. Am J Physiol Renal Physiol 293:F391–F397

    CAS  PubMed  Google Scholar 

  • Ugele B, St-Pierre MV, Pihusch M et al (2003) Characterization and identification of steroid sulfate transporters in human placenta. Am J Physiol Endocrinol Metab 284:E390–E398

    CAS  PubMed  Google Scholar 

  • Ugele B, Bahn A, Rex-Haffner M (2008) Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J Steroid Biochem Mol Biol 111:1–6

    CAS  PubMed  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K et al (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    CAS  PubMed  Google Scholar 

  • Urban TJ, Sebro R, Hurowitz EH et al (2006) Functional genomics of membrane transporters in human populations. Genome Res 16:2223–2230

    Google Scholar 

  • Uwai Y, Okuda M, Takami K et al (1998) Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett 438:321–324

    CAS  PubMed  Google Scholar 

  • Uwai Y, Saito H, Hashimoto Y, Inui K (2000a) Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1. Eur J Pharmacol 398:193–197

    CAS  PubMed  Google Scholar 

  • Uwai Y, Saito H, Hashimoto Y, Inui K (2000b) Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther 295:261–265

    CAS  PubMed  Google Scholar 

  • Uwai Y, Saito H, Inui K (2000c) Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur J Pharmacol 409:31–36

    CAS  PubMed  Google Scholar 

  • Uwai Y, Taniguchi R, Motohashi H et al (2004) Methotrexate-loxoprofen interaction: Involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Dispos 19:369–374

    CAS  Google Scholar 

  • Uwai Y, Ida H, Tsuji Y et al (2007a) Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 24:811–815

    CAS  PubMed  Google Scholar 

  • Uwai Y, Motohashi H, Tsuji Y et al (2007b) Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol 74:161–168

    CAS  PubMed  Google Scholar 

  • Vallon V, Eraly S, Wikoff WR et al (2008a) Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol 19:1732–1740

    CAS  PubMed  Google Scholar 

  • Vallon V, Rieg T, Ahn SY et al (2008b) Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 294:F867–F873

    CAS  PubMed  Google Scholar 

  • van Aubel RAMH, Masereeuw R, Russel FGM (2000) Molecular pharmacology of renal organic anion transporters. Am J Physiol Renal Physiol 279:F216–F232

    PubMed  Google Scholar 

  • van Montfoort JE, Meijer DKF, Groothuis GMM et al (2003) Drug uptake systems in liver and kidney. Curr Drug Metab 4:185–211

    PubMed  Google Scholar 

  • Vanholder R, De Smet R, Glorieux G, for the European Uremic Toxin Work Group (EUTox) et al (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    CAS  PubMed  Google Scholar 

  • VanWert AL, Bailey RM, Sweet DH (2007) Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 293:F1332–F1341

    Google Scholar 

  • VanWert AL, Sweet DH (2007) Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact on reduced folates. Pharm Res 25:453–462

    PubMed  Google Scholar 

  • VanWert AL, Srimaroeng C, Sweet DH (2008) Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharm 74:122–131

    CAS  Google Scholar 

  • VanWert AL, Gionfriddo MR, Sweet DH (2010) Organic anion transporters: discovery, pharmacology, regulation and roles in pathopysiology. Biopharm Drug Dispos 31:1–71

    CAS  PubMed  Google Scholar 

  • Villar SR, Brandoni A, Anzai N et al (2005) Altered expression of rat renal cortical OAT1 and OAT3 in response to bilateral ureteral obstruction. Kidney Int 68:2704–2713

    CAS  PubMed  Google Scholar 

  • Villar SR, Brandoni A, Torres AM (2008) Time course of organic anion excretion in rats with bilateral ureteral obstruction: role of organic anion transporters (Oat1 and Oat3). Nephron Physiol 110:p45–p56

    CAS  PubMed  Google Scholar 

  • Vree TB, van den Biggelaar-Martea M, Verwey-van Wissen CPWGM (1995) Probenecid inhibits the renal clearance of frusemide and its acyl glucuronide. Br J Clin Pharmacol 39:692–695

    CAS  PubMed  Google Scholar 

  • Wada S, Tsuda M, Sekine T et al (2000) Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther 294:844–849

    CAS  PubMed  Google Scholar 

  • Windass AS, Lowes S, Wang Y, Brown CDA (2007) The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther 322:1221–1227

    CAS  PubMed  Google Scholar 

  • Wolff NA, Werner A, Burkhardt S, Burckhardt G (1997) Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Lett 417:287–291

    CAS  PubMed  Google Scholar 

  • Wolff NA, Thies K, Kuhnke N et al (2003) Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J Am Soc Nephrol 14:1959–1968

    CAS  PubMed  Google Scholar 

  • Wolff NA, Burckhardt BC, Burckhardt G et al (2007) Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of human kidney. Nephrol Dial Transplant 22:2497–2503

    CAS  PubMed  Google Scholar 

  • Wood CE, Coursins R, Zhang D, Keller-Wood M (2005) Ontogeny of expression of organic anion transporters 1 and 3 in ovine fetal and neonatal kidney. Exp Biol Med 230:668–673

    CAS  Google Scholar 

  • Wright SH, Dantzler WB (2004) Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 84:987–1049

    CAS  PubMed  Google Scholar 

  • Xu G, Bhatnagar V, Wen G et al (2005) Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT1 (RST)]. Kidney Int 68:1491–1499

    CAS  PubMed  Google Scholar 

  • Xu G, Chen X, Wu D et al (2006a) Development of high-specificity antibodies against renal urate transporters using genetic immunization. J Biochem Mol Biol 39:696–702

    CAS  PubMed  Google Scholar 

  • Xu G, Tanaka K, Sun A-Q, You G (2006b) Functional role of the C-terminus of human organic anion transporter hOAT1. J Biol Chem 281:31178–31183

    CAS  PubMed  Google Scholar 

  • Yamada A, Maeda K, Kamiyama E et al (2007) Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos 35:2166–2176

    CAS  PubMed  Google Scholar 

  • Yamashita F, Ohtani H, Koyabu N et al (2006) Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol 58:1499–1505

    CAS  PubMed  Google Scholar 

  • Yokoyama H, Anzai N, Ljubojevic M et al (2008) Functional and immunochemical characterization of a novel organic anion transporter Oat8 (Slc22a9) in rat renal collecting duct. Cell Physiol Biochem 21:269–278

    CAS  PubMed  Google Scholar 

  • You G, Kuze K, Kohanski RA et al (2000) Regulation of mOAT-mediated organic anion transport by okadaic acid and protein kinase C in LLC-PK1 cells. J Biol Chem 275:10278–10284

    CAS  PubMed  Google Scholar 

  • Youngblood GL, Sweet DH (2004) Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 287:F236–F244

    CAS  PubMed  Google Scholar 

  • Yuan H, Feng B, Yu Y et al (2009) Renal organic anion transporter-mediated drug–drug interaction between gemcabene and quinapril. J Pharmacol Exp Ther 330:191–197

    CAS  PubMed  Google Scholar 

  • Zalups RK, Ahmad S (2005) Transport of N-acetyl-S-cysteine conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J Pharmacol Exp Ther 314:1158–1168

    CAS  PubMed  Google Scholar 

  • Zhang X, Groves CE, Bahn A et al (2004) Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. Am J Physiol Renal Physiol 287:F999–F1010

    CAS  PubMed  Google Scholar 

  • Zhang Q, Hong M, Duan P et al (2008) Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway. J Biol Chem 283:32570–32579

    CAS  PubMed  Google Scholar 

  • Zhou F, Pan Z, Ma J, You G (2004a) Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4). Biochem J 384:87–92

    CAS  PubMed  Google Scholar 

  • Zhou F, Tanaka K, Pan Z et al (2004b) The role of glycine residues in the function of human organic anion transporter 4. Mol Pharm 65:1141–1147

    CAS  Google Scholar 

  • Zhou F, Xu W, Hong M et al (2005) The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter OAT4. Mol Pharm 67:868–876

    CAS  Google Scholar 

  • Zhou F, Illsley NP, You G (2006) Functional characterization of a human organic anion transporter hOAT4 in placental BeWo cells. Eur J Pharm Sci 27:518–523

    CAS  PubMed  Google Scholar 

  • Zhou F, Hong M, You G (2007a) Regulation of the human organic anion transporter 4 by progesterone and protein kinase C in human placental BeWo cells. Am J Physiol Endocrinol Metab 293:E57–E61

    CAS  PubMed  Google Scholar 

  • Zhou F, Xu W, Tanaka K, You G (2007b) Comparison of the interaction of human organic anion transporter hOAT4 with PDZ proteins between kidney cells and placental cells. Pharm Res 25:475–480

    PubMed  Google Scholar 

  • Zlender V, Breljak D, Ljubojevic M et al (2009) Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex. Toxicol Appl Pharmacol 239:284–296

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Burckhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Burckhardt, G., Burckhardt, B.C. (2011). In Vitro and In Vivo Evidence of the Importance of Organic Anion Transporters (OATs) in Drug Therapy. In: Fromm, M., Kim, R. (eds) Drug Transporters. Handbook of Experimental Pharmacology, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14541-4_2

Download citation

Publish with us

Policies and ethics