Skip to main content

Exocytosis in Islet β-Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

The development of technologies that allow for live optical imaging of exocytosis from β-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from β-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca2+ and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in β-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from β-cells in the islets of Langerhans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dean PM. Ultrastructural morphometry of the pancreatic beta-cell. Diabetologia 1973;9:115–9.

    PubMed  CAS  Google Scholar 

  2. Takahashi N, Hatakeyama H, Okado H, Miwa A, Kishimoto T, Kojima T, Abe T, Kasai H. Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J Cell Biol 2004;165:255–62.

    PubMed  CAS  Google Scholar 

  3. Kasai H, Hatakeyama H, Kishimoto T, Liu T-T, Nemoto T, Takahashi N. A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J Physiol 2005;568:891–903.

    PubMed  CAS  Google Scholar 

  4. Dudek RW, Boyne AF. An excursion through the ultrastructural world of quick-frozen pancreatic islets. Am J Anat 1986;175:217–43, 354.

    PubMed  CAS  Google Scholar 

  5. Plattner H, Artalejo AR, Neher E. Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol 1997;139:1709–17.

    PubMed  CAS  Google Scholar 

  6. Kahn CR. Joslin’s Diabetes Mellitus. Lippincott Williams 2004;& Wilkins, Philadelphia,.

    Google Scholar 

  7. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–60.

    PubMed  CAS  Google Scholar 

  8. Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 1995;95:690–8.

    PubMed  CAS  Google Scholar 

  9. Thomas-Reetz AC, De Camilli P. A role for synaptic vesicles in non-neuronal cells: clues from pancreatic β cells and from chromaffin cells. FASEB J 1994;8:209–16.

    PubMed  CAS  Google Scholar 

  10. Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H. Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells. J Physiol 2007;582:1087–98.

    PubMed  CAS  Google Scholar 

  11. Dan Y, Poo M. Quantal transmitter secretion from myocytes loaded with acetylcholine. Nature 1992;359:733–6.

    PubMed  CAS  Google Scholar 

  12. Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J. Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 2002;4:955–62.

    PubMed  CAS  Google Scholar 

  13. Kasai H. Comparative biology of exocytosis: Implications of kinetic diversity for secretory function. Trends Neurosci 1999;22:88–93.

    PubMed  CAS  Google Scholar 

  14. McNeil PL, Steinhardt RA. Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 2003;19:697–731.

    PubMed  CAS  Google Scholar 

  15. Steinhardt RA, Bi G, Alderton JM. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 1994;263:390–3.

    PubMed  CAS  Google Scholar 

  16. Maritzen T, Keating DJ, Neagoe I, Zdebik AA, Jentsch TJ. Role of the vesicular chloride transporter ClC-3 in neuroendocrine tissue. J Neurosci 2008;28:10587–98.

    PubMed  CAS  Google Scholar 

  17. Rothman JE. Mechanisms of intracellular protein transport. Nature 1994;372:55–63.

    PubMed  CAS  Google Scholar 

  18. Sudhof TC. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 1995;375:645–53.

    PubMed  CAS  Google Scholar 

  19. Mochida S. Protein–protein interactions in neurotransmitter release. Neurosci Res 2000;36:175–82.

    PubMed  CAS  Google Scholar 

  20. Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell 2003;112:519–33.

    PubMed  CAS  Google Scholar 

  21. Lang J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 1999;259:3–17.

    PubMed  CAS  Google Scholar 

  22. Gerber SH, Sudhof TC. Molecular determinants of regulated exocytosis. Diabetes 51 Suppl 2002;1:S3–11.

    Google Scholar 

  23. Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 2005;171:99–109.

    PubMed  CAS  Google Scholar 

  24. Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, Kasai H, Nagamatsu S, Gomi H, Izumi T. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 2005;115:388–96.

    PubMed  CAS  Google Scholar 

  25. Nemoto T, Kimura R, Ito K, Tachikawa A, Miyashita Y, Iino M, Kasai H. Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol 2001;3:253–8.

    PubMed  CAS  Google Scholar 

  26. Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 2002;297:1349–52.

    PubMed  CAS  Google Scholar 

  27. Nemoto T, Kojima T, Oshima A, Bito H, Kasai H. Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. J Biol Chem 2004;279:37544–50.

    PubMed  CAS  Google Scholar 

  28. Oshima A, Kojima T, Dejima K, Hisa I, Kasai H, Nemoto T. Two-photon microscopic analysis of acetylcholine-induced mucus secretion in guinea pig nasal glands. Cell Calcium 2005;37:349–57.

    PubMed  CAS  Google Scholar 

  29. Kishimoto T, Liu TT, Hatakeyama H, Nemoto T, Takahashi N, Kasai H. Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 2005;568:905–15.

    PubMed  CAS  Google Scholar 

  30. Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H. Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 2005;568:917–29.

    PubMed  CAS  Google Scholar 

  31. Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 2006;570:271–82.

    PubMed  CAS  Google Scholar 

  32. Kishimoto T, Kimura R, Liu T-T, Nemoto T, Takahashi N, Kasai H. Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J 2006;25:673–82.

    PubMed  CAS  Google Scholar 

  33. Neher E, Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 1982;79:6712–16.

    PubMed  CAS  Google Scholar 

  34. Klyachko VA, Jackson MB. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 2002;418:89–92.

    PubMed  CAS  Google Scholar 

  35. MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L. Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat beta-cells. Diabetes 2005;54:736–43.

    PubMed  CAS  Google Scholar 

  36. Alvarez de Toledo G, Fernadez-Chacon R, Fernandez JM. Release of secretory products during transient vesicle fusion. Nature 1993;363:554–8.

    Google Scholar 

  37. Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 1997;389:509–12.

    PubMed  CAS  Google Scholar 

  38. Takahashi N, Kadowaki T, Yazaki Y, Miyashita Y, Kasai H. Multiple exocytotic pathways in pancreatic β cells. J Cell Biol 1997;138:55–64.

    PubMed  CAS  Google Scholar 

  39. Smith CB, Betz WJ. Simultaneous independent measurement of endocytosis and exocytosis. Nature 1996;380:531–4.

    PubMed  CAS  Google Scholar 

  40. Kasai H, Takagi H, Ninomiya Y, Kishimoto T, Ito K, Yoshida A, Yoshioka T, Miyashita Y. Two components of exocytosis and endocytosis in PC12 cells studied using caged-Ca2+ compounds. J Physiol (Lond 1996;) 494:53–65.

    PubMed  CAS  Google Scholar 

  41. Zhou Z, Misler S. Amperometric detection of quantal secretion from patch-clamped rat pancreatic β-cells. J Biol Chem 1996;270:270–7.

    Google Scholar 

  42. Kirillova J, Thomas P, Almers W. Two independently regulated secretory pathways in mast cells. J Physiol 1993);(Paris) 87:203–8.

    CAS  Google Scholar 

  43. Oberhauser AF, Robinson I, Fernandez JM. Simultaneous capacitance and amperometric measurements of exocytosis: A comparison. Biophys J 1996;71:1131–9.

    PubMed  CAS  Google Scholar 

  44. Ninomiya Y, Kishimoto T, Yamazawa T, Ikeda H, Miyashita Y, Kasai H. Kinetic diversity in the fusion of exocytotic vesicles. EMBO J 1997;16:929–34.

    PubMed  CAS  Google Scholar 

  45. Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E. Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J 1998;74:2100–13.

    PubMed  CAS  Google Scholar 

  46. Karanauskaite J, Hoppa MB, Braun M, Galvanovskis J, Rorsman P. Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 2009; 458:389–401.

    Google Scholar 

  47. Hollins B, Ikeda SR (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J Neurophysiol 78:3069–76

    PubMed  CAS  Google Scholar 

  48. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S. Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 2005;118:4271–82.

    PubMed  CAS  Google Scholar 

  49. Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P. Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 2004;123:191–204.

    PubMed  CAS  Google Scholar 

  50. Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P. Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 2007;129:221–31.

    PubMed  CAS  Google Scholar 

  51. Steyer JA, Horstmann H, Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 1997;388:474–8.

    PubMed  CAS  Google Scholar 

  52. Oheim M, Loerke D, Stuhmer W, Chow RH. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 1998;27:83–98.

    PubMed  CAS  Google Scholar 

  53. Tsuboi T, Terakawa S, Scalettar BA, Fantus C, Roder J, Jeromin A. Sweeping model of dynamin activity. Visualization of coupling between exocytosis and endocytosis under an evanescent wave microscope with green fluorescent proteins. J Biol Chem 2002;277:15957–61.

    PubMed  CAS  Google Scholar 

  54. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 2007;177:695–705.

    PubMed  CAS  Google Scholar 

  55. Kasai K, Fujita T, Gomi H, Izumi T. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 2008;9:1191–203.

    PubMed  CAS  Google Scholar 

  56. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 2007;104:19333–8.

    PubMed  CAS  Google Scholar 

  57. Allersma MW, Wang L, Axelrod D, Holz RW. Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Mol Biol Cell 2004;15:4658–68.

    PubMed  CAS  Google Scholar 

  58. Toonen RF, Kochubey O, de WH, Gulyas-Kovacs A, Konijnenburg B, Sorensen JB, Klingauf J, Verhage M. Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 2006;25:3725–37.

    PubMed  CAS  Google Scholar 

  59. Verhage M, Sorensen JB. Vesicle docking in regulated exocytosis. Traffic 2008;9:1414–24.

    PubMed  CAS  Google Scholar 

  60. Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, Chow RH. Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J 2004;87:L03–5.

    PubMed  CAS  Google Scholar 

  61. Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006;58:850–77.

    PubMed  CAS  Google Scholar 

  62. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, Wada J, Zhang Y, Marselli L, Nammo T, Yoneda K, Onishi M, Higashiyama S, Matsuzawa Y, Gonzalez FJ, Weir GC, Kasai H, Shimomura I, Miyagawa J, Wollheim CB, Yamagata K. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab 2005;2:373–84.

    PubMed  CAS  Google Scholar 

  63. Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, Nammo T, Yoneda K, Inoue Y, Sladek FM, Magnuson MA, Kasai H, Miyagawa J, Gonzalez FJ, Shimomura I. Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 2006;281:5246–57.

    PubMed  CAS  Google Scholar 

  64. Speidel D, Salehi A, Obermueller S, Lundquist I, Brose N, Renstrom E, Rorsman P. CAPS1 and CAPS2 regulate stability and recruitment of insulin granules in mouse pancreatic beta cells. Cell Metab 2008;7:57–67.

    PubMed  CAS  Google Scholar 

  65. Ma L, Bindokas VP, Kuznetsov A, Rhodes C, Hays L, Edwardson JM, Ueda K, Steiner DF, Philipson LH. Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc Natl Acad Sci U S A 2004;101:9266–71.

    PubMed  CAS  Google Scholar 

  66. Michael DJ, Ritzel RA, Haataja L, Chow RH. Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 2006;55:600–7.

    PubMed  CAS  Google Scholar 

  67. Scepek S, Lindau M. Focal exocytosis by eosinophils – compound exocytosis and cumulative fusion. EMBO J 1993;12:1811–7.

    PubMed  CAS  Google Scholar 

  68. Hafez I, Stolpe A, Lindau M. Compound exocytosis and cumulative fusion in eosinophils. J Biol Chem 2003;278:44921–8.

    PubMed  CAS  Google Scholar 

  69. Alvarez de Toledo G, Fernandez JM. Compound versus multigranular exocytosis in peritoneal mast cells. J Gen Physiol 1990;95:397–409.

    Google Scholar 

  70. Klenchin VA, Martin TF. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 2000;82:399–407.

    PubMed  CAS  Google Scholar 

  71. Rizzoli SO, Betz WJ. The structural organization of the readily releasable pool of synaptic vesicles. Science 2004;303:2037–9.

    PubMed  CAS  Google Scholar 

  72. Bonner-Weir S. Morphological evidence for pancreatic polarity of β-cell within islets of Langerhans. Diabetes 1988;37:616–21.

    PubMed  CAS  Google Scholar 

  73. In’t VP, Pipeleers DG, Gepts W. Evidence against the presence of tight junctions in normal endocrine pancreas. Diabetes 1984;33:101–4.

    Google Scholar 

  74. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 1973;57:315–44.

    PubMed  CAS  Google Scholar 

  75. Kwan EP, Gaisano HY. Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes 2005;54:2734–43.

    PubMed  CAS  Google Scholar 

  76. Breckenridge LJ, Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 1987;328:814–7.

    PubMed  CAS  Google Scholar 

  77. Zhou Z, Misler S, Chow RH. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 1996;70:1543–52.

    PubMed  CAS  Google Scholar 

  78. Dodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 1998;8:189–94.

    PubMed  CAS  Google Scholar 

  79. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P. Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 2002;33:287–99.

    PubMed  CAS  Google Scholar 

  80. Tsuboi T, McMahon HT, Rutter GA. Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 2004;279:47115–24.

    PubMed  CAS  Google Scholar 

  81. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 2002;157:1071–82.

    PubMed  CAS  Google Scholar 

  82. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 2003;100:2070–5.

    PubMed  CAS  Google Scholar 

  83. Chernomordik LV, Kozlov MM. Membrane hemifusion: crossing a chasm in two leaps. Cell 2005;123:375–82.

    PubMed  CAS  Google Scholar 

  84. Thorn P, Fogarty KE, Parker I. Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 2004;101:6774–9.

    PubMed  CAS  Google Scholar 

  85. Han X, Wang CT, Bai J, Chapman ER, Jackson MB. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 2004;304:289–92.

    PubMed  CAS  Google Scholar 

  86. Pickett JA, Thorn P, Edwardson JM. The plasma membrane Q-SNARE syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J Biol Chem 2005;280:1506–11.

    PubMed  CAS  Google Scholar 

  87. Persaud SJ, Jones PM, Howell SL. Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Com 1990;173:833–9.

    PubMed  CAS  Google Scholar 

  88. Lester LB, Langeberg LK, Scott JD. Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci U S A 1997;94:14942–7.

    PubMed  CAS  Google Scholar 

  89. Harris TE, Persaud SJ, Jones PM. Pseudosubstrate inhibition of cyclic AMP-dependent protein kinase in intact pancreatic islets: effects on cyclic AMP-dependent and glucose-dependent insulin secretion. Biochem Biophys Res Com 1997;232:648–51.

    PubMed  CAS  Google Scholar 

  90. Takahashi N, Nemoto T, Kiumra R, Tachikawa A, Miwa A, Okado H, Miyashita Y, Iino M, Kadowaki T, Kasai H. Two-photon excitation imaging of pancreatic islets with various fluorescent probes. Diabetes 2002;51 Suppl. 1:S25–8.

    PubMed  CAS  Google Scholar 

  91. Takahashi N, Kadowaki T, Yazaki Y, Elis-Davies GCR, Miyashita Y, Kasai H. Post-priming actions of ATP in the Ca2+ dependent exocytosis in pancreatic β-cells. Proc Natl Acad Sci, U S A 1999;96:760–5.

    PubMed  CAS  Google Scholar 

  92. Gembal M, Gilon P, Henquin J. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 1992;89:1288–95.

    PubMed  CAS  Google Scholar 

  93. Aizawa T, Sato Y, Ishihara F, Taguchi N, Komatsu M, Suzuki N, Hashizume K, Yamada T. ATP-sensitive K+ channel-independent glucose action in rat pancreatic β-cell. Am J Physiol 1994;266:C622–7.

    PubMed  CAS  Google Scholar 

  94. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 2009;150:33–45.

    PubMed  CAS  Google Scholar 

  95. Kasai H, Suzuki T, Liu T, Kishimoto T, Takahashi T. Fast and cAMP-sensitive mode of Ca2+-dependent insulin exocytosis in pancreatic β-cells. Diabetes 2001;51:S19–24.

    Google Scholar 

  96. Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM. Adenosine 3’,5’-monophosphate in pancreatic islets: glucose-induced insulin release. Science 1973;179:569–71.

    PubMed  CAS  Google Scholar 

  97. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ. Calmodulin activation of adenylate cyclase in pancreatic islets. Science 1979;206:225–27.

    PubMed  CAS  Google Scholar 

  98. Hellman B, Idahl LA, Lernmark A, Taljedal IB. The pancreatic beta-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci U S A 1974;71:3405–9.

    PubMed  CAS  Google Scholar 

  99. Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008;8:26–37.

    PubMed  CAS  Google Scholar 

  100. Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009;297:58–72.

    PubMed  CAS  Google Scholar 

  101. Enserink JM, Christensen AE, de RJ, van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002;4:901–6.

    PubMed  CAS  Google Scholar 

  102. Yaekura K, Kakei M, Yada T. cAMP-signalling pathway acts in selective synergism with glucose or tolbutamide to increase cytosolic Ca2+ in rat pancreatic β-cells. Diabetes 1996;45:295–301.

    PubMed  CAS  Google Scholar 

  103. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG. A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 2005;566:173–88.

    PubMed  CAS  Google Scholar 

  104. Islam MS. The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes 2002;51:1299–309.

    PubMed  CAS  Google Scholar 

  105. MacDonald PE, Braun M, Galvanovskis J, Rorsman P. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 2006;4:283–90.

    PubMed  CAS  Google Scholar 

  106. Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Sudhof TC, Han W. Synaptotagmin-7 is a principal Ca2+-sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol 2009;

    Google Scholar 

  107. Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–86

    PubMed  CAS  Google Scholar 

  108. Monterrat C, Grise F, Benassy MN, Hemar A, Lang J. The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 2007;127:625–32.

    PubMed  CAS  Google Scholar 

  109. Grise F, Taib N, Monterrat C, Lagree V, Lang J. Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine beta-cells. Biochem J 2007;403:483–92.

    PubMed  CAS  Google Scholar 

  110. Nagy G, Reim K, Matti U, Brose N, Binz T, Rettig J, Neher E, Sorensen JB. Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 2004;41:417–29.

    PubMed  CAS  Google Scholar 

  111. Chheda MG, Ashery U, Thakur P, Rettig J, Sheng ZH. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 2001;3:331–8.

    PubMed  CAS  Google Scholar 

  112. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S. Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001;276:46046–53.

    PubMed  CAS  Google Scholar 

  113. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000;2:805–11.

    PubMed  CAS  Google Scholar 

  114. Kwan EP, Xie L, Sheu L, Ohtsuka T, Gaisano HY. Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells. Diabetes 2007;56:2579–88.

    PubMed  CAS  Google Scholar 

  115. Lonart G, Schoch S, Kaeser PS, Larkin CJ, Sudhof TC, Linden DJ. Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 2003;115:49–60.

    PubMed  CAS  Google Scholar 

  116. Ivarsson R, Jing X, Waselle L, Regazzi R, Renstrom E. Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 2005;6:1027–35.

    PubMed  CAS  Google Scholar 

  117. Wang Z, Oh E, Thurmond DC. Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 2007;282:9536–46.

    PubMed  CAS  Google Scholar 

  118. Nevins AK, Thurmond DC. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 2005;280:1944–52.

    PubMed  CAS  Google Scholar 

  119. Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E. CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 2005;115:146–54.

    PubMed  CAS  Google Scholar 

  120. Knoch KP, Meisterfeld R, Kersting S, Bergert H, Altkruger A, Wegbrod C, Jager M, Saeger HD, Solimena M. cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in beta cells. Cell Metab 2006;3:123–34.

    PubMed  CAS  Google Scholar 

  121. Henquin JC, Nenquin M, Szollosi A, Kubosaki A, Louis NA. Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. J Endocrinol 2008;196:573–81.

    PubMed  CAS  Google Scholar 

  122. Varadi A, Tsuboi T, Rutter GA. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 2005;16:2670–80.

    PubMed  CAS  Google Scholar 

  123. Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA. Munc 18-1 and granuphilin collaborate during insulin granule exocytosis. Traffic 2008;9:813–32.

    PubMed  CAS  Google Scholar 

  124. Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2004;18:117–26.

    PubMed  CAS  Google Scholar 

  125. Matsumoto M, Miki T, Shibasaki T, Kawaguchi M, Shinozaki H, Nio J, Saraya A, Koseki H, Miyazaki M, Iwanaga T, Seino S. Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc Natl Acad Sci U S A 2004;101:8313–8.

    PubMed  CAS  Google Scholar 

  126. Lopez JA, Kwan EP, Xie L, He Y, James DE, Gaisano HY. The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells. J Biol Chem 2008;283:17939–45.

    PubMed  CAS  Google Scholar 

  127. Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 2009;136:235–48.

    PubMed  CAS  Google Scholar 

  128. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 2007;318:1299–302.

    PubMed  CAS  Google Scholar 

  129. Reese C, Heise F, Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 2005;436:410–4.

    PubMed  CAS  Google Scholar 

  130. Larsson S, Wierup N, Sundler F, Eliasson L, Holm C. Lack of cholesterol mobilization in islets of hormone-sensitive lipase deficient mice impairs insulin secretion. Biochem Biophys Res Commun 2008;376:558–62.

    PubMed  CAS  Google Scholar 

  131. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226–30.

    PubMed  CAS  Google Scholar 

  132. Poy MN, Hausser J , Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M. miR-375 maintains normal pancreatic {alpha}- and {beta}-cell mass. Proc Natl Acad Sci U S 2009;A.

    Google Scholar 

  133. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–12

    PubMed  CAS  Google Scholar 

  134. Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH. Foxa2 controls vesicle docking and insulin secretion in mature Beta cells. Cell Metab 2007;6:267–79.

    PubMed  CAS  Google Scholar 

  135. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932–42.

    PubMed  CAS  Google Scholar 

  136. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008;57:2728–36.

    PubMed  CAS  Google Scholar 

  137. Rebois RV, Reynolds EE, Toll L, Howard BD. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 1980;19:1240–8.

    PubMed  CAS  Google Scholar 

  138. Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc Natl Acad Sci USA 2001;98:12748–53.

    PubMed  CAS  Google Scholar 

  139. Brumback AC, Lieber JL, Angleson JK, Betz WJ. Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 2004;33:287–94.

    PubMed  CAS  Google Scholar 

  140. Orci L, Malaisse-Lagae F, Ravazzola M, Amherdt M, Renold AE. Exocytosis-endocytosis coupling in the pancreatic beta cell. Science 1973;181:561–2.

    PubMed  CAS  Google Scholar 

  141. Coorssen JR, Schmitt H, Almers W. Ca2+ triggered massive exocytosis in Chinese hamster ovary cells. EMBO J 1996;15:3787–91.

    PubMed  CAS  Google Scholar 

  142. Ninomiya Y, Kishimoto T, Miyashita Y, Kasai H. Ca2+-dependent exocytotic pathways in CHO fibroblasts revealed by capacitance measurement and a caged-Ca2+ compound. J Biol Chem 1996;271:17751–4.

    PubMed  CAS  Google Scholar 

  143. Ito K, Miyashita Y, Kasai H. Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 1997;16:242–51.

    PubMed  CAS  Google Scholar 

  144. McNeil PL, Steinhardt RA. Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 1997;137:1–4.

    PubMed  CAS  Google Scholar 

  145. Renstrom E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 1997;502:105–18.

    PubMed  CAS  Google Scholar 

  146. Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 2003;121:181–97.

    PubMed  CAS  Google Scholar 

  147. Sedej S, Rose T, Rupnik M. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 2005;567:799–813.

    PubMed  CAS  Google Scholar 

  148. John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 1990;29:6058–65.

    PubMed  CAS  Google Scholar 

  149. Itzen A, Rak A, Goody RS. Sec2 is a highly efficient exchange factor for the Rab protein Sec4. J Mol Biol 2007;365:1359–67.

    PubMed  CAS  Google Scholar 

  150. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000;2:805–11.

    PubMed  CAS  Google Scholar 

  151. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 1997;388:593–8.

    PubMed  CAS  Google Scholar 

  152. Bernard-Kargar C, Kassis N, Berthault MF, Pralong W, Ktorza A. Sialylated form of the neural cell adhesion molecule (NCAM): a new tool for the identification and sorting of beta-cell subpopulations with different functional activity. Diabetes 50 Suppl 2001;1:S125–30.

    Google Scholar 

  153. Langley OK, etsee-Ufrecht MC, Grant NJ, Gratzl M. Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 1989;37:781–91.

    PubMed  CAS  Google Scholar 

  154. Esni F, Taljedal IB, Perl AK, Cremer H, Christofori G, Semb H. Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 1999;144:325–37.

    PubMed  CAS  Google Scholar 

  155. Hutton JC, Peshavaria M, Tooke NE. 5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma. Biochem J 1983;210:803–10.

    PubMed  CAS  Google Scholar 

  156. Hutton JC. The insulin secretory granule. Diabetologia 1989;32:271–81.

    PubMed  CAS  Google Scholar 

  157. Gammelsaeter R, Froyland M, Aragon C, Danbolt NC, Fortin D, Storm-Mathisen J, Davanger S, Gundersen V. Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. J Cell Sci 2004;117:3749–58.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Kasai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kasai, H., Hatakeyama, H., Ohno, M., Takahashi, N. (2010). Exocytosis in Islet β-Cells. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_14

Download citation

Publish with us

Policies and ethics