Skip to main content

Thermo-TRP Channels: Biophysics of Polymodal Receptors

  • Chapter
  • First Online:
Book cover Transient Receptor Potential Channels

Abstract

In this chapter we discuss the polymodal activation of thermo-TRP channels using as exemplars two of the best characterized members of this class of channels: TRPM8 and TRPV1. Since channel activation by temperature is the hallmark of thermo-TRP channels, we present a detailed discussion on the thermodynamics involved in the gating processes by temperature, voltage, and agonists. We also review recently published data in an effort to put together all the pieces available of the amazing puzzle of thermo-TRP channel activation. Special emphasis is made in the structural components that allow the channel-forming proteins to integrate such diverse stimuli, and in the coupling between the different sensors and the ion conduction pathway. We conclude that the present data is most economically explained by allosteric models in which temperature, voltage, and agonists act separately to modulate channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TM: Transmembrane domain, helixes spanning the lipid bilayer membrane.

  2. 2.

    In the TRPV subfamily the signature sequence is TIGX1GX2 (X1 = M or L; X2 = D or E) for TRPV1-4 and FLTXID (X = V or I) for TRPV5-6.

  3. 3.

    Temperature coefficient. Is a measure of the kinetic reaction change of a system as a consequence of increasing the temperature by 10ºC. Q10 is a useful parameter to establish temperature dependence of a process. the Q10 could be easily obtained from the macroscopic currents using the following definition:

    $$ \ Q_{10} = \left( {\frac{{I_2 }}{{I_1 }}} \right)^{\tfrac{{10}}{{(T_2 - T_1 )}}} ,$$

    where I 1 and I 2 are the currents obtained at temperatures, T 1 and T 2 . Although the Q10 obtained by this procedure is very useful as a comparative value it lacks thermodynamic meaning. A relationship between Q10 and the Arrhenius activation energy (E a ) can be obtained by measuring rate constants, k, at different temperatures since k = Aexp(-Ea/RT) where A is a constant called the frequency factor [28]. It is easy to show that

    $$E_a = R\left( {\frac{{T_1 T_2 }}{{T_2 - T_1 }}} \right)\ln \frac{{k_2 }}{{k_1 }},$$

    where k 1 and k 2 are the time constants measured at T 1 and T 2 , respectively that can be written as:

    $$E_a = - RT_1 \left( {\frac{{T_1 + 10}}{{10}}} \right)\ln Q_{10},$$
  4. 4.

    Here we mention other ion channels with high Q10. Chloride channel, ClC-0 [23], voltage gated proton channel Hv1.1 [24], mechano-activated potassium channels TRAAK and TREK-1 [25], N-type inactivation of shaker potassium channel [26] and Connexin 38 [27].

  5. 5.

    Threshold: In general this concept should avoided in particular considering that in ion channels the average state of activation is governed by a probability distribution that does not resemble an “all or none” process typical of action potentials. In thermo-TRP, this concept must be understood as a characteristic temperature at which the channel activity is significant at a given voltage and/or agonist concentration.

  6. 6.

    Burst: Single channel gating, where the channel activity is grouped in periods of high activity, flanked by gaps or quiescent periods.

  7. 7.

    PKC: Protein Kinase C, protein that mediate S/T phosphorylations in a Ca+2 dependent manner.

  8. 8.

    2-APB: 2-aminoethoxydiphenyl borate, agonist of TRPV1 channel

  9. 9.

    FRET: Förster Resonance Energy Transfer, this technique uses the non radiative energy transfer between two chromophores. The efficiency of the transfer process is very sensitive to the distance and is used to establish conformational changes in proteins.

  10. 10.

    MCD binds cholesterol reversibly and is commonly used to deplete membrane cholesterol acutely from both leaflets of the bilayer [61].

  11. 11.

    TRP Box is a consensus sequence, IWKLQR, located in C-terminal of the TRP channels.

  12. 12.

    MWC: Monod, Wyman and Changeux allosteric model or concerted model. This model explain transitions between symmetrical subunits that can bind agonist in an independent way, changing the subunit from relaxed to activated states.

References

  1. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  2. Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    Article  CAS  PubMed  Google Scholar 

  3. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  4. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, Mackinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  5. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182

    Article  CAS  PubMed  Google Scholar 

  6. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106: 1273–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  CAS  PubMed  Google Scholar 

  8. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  CAS  PubMed  Google Scholar 

  9. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G (2000) Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527(Pt 2):239–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410:705–709

    Article  CAS  PubMed  Google Scholar 

  11. Caterina MJ (2007) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76

    Article  CAS  PubMed  Google Scholar 

  12. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  CAS  PubMed  Google Scholar 

  13. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103:19564–19568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bandell M, Macpherson LJ, Patapoutian A (2007) From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol 17:490–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  CAS  PubMed  Google Scholar 

  16. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  17. Eigen M (1968) New looks and outlooks on physical enzymology. Q Rev Biophys 1:3–33

    Article  CAS  PubMed  Google Scholar 

  18. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  19. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  20. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  21. Correa AM, Bezanilla F, Latorre R (1992) Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects. Biophys J 61:1332–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15:1736–1749

    Article  CAS  PubMed  Google Scholar 

  23. Pusch M, Ludewig U, Jentsch TJ (1997) Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels. J Gen Physiol 109:105–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. DeCoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol 112:503–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Noel J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A, Lazdunski M (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nobile M, Olcese R, Toro L, Stefani E (1997) Fast inactivation of Shaker K+ channels is highly temperature dependent. Exp Brain Res 114:138–142

    Article  CAS  PubMed  Google Scholar 

  27. Ebihara L (1996) Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J 71:742–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hille B (2001) Ion Channels of Excitable Membranes. Sunderlan, MA: Sinauer

    Google Scholar 

  29. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM (2009) Roles of transient receptor potential channels in pain. Brain Res Rev 60:2–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  31. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  32. Latorre R, Zaelzer C, Brauchi S (2009) Structure-functional intimacies of transient receptor potential channels. Q Rev Biophys 42:201–246

    Article  CAS  PubMed  Google Scholar 

  33. Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res 1160:39–46

    Article  CAS  PubMed  Google Scholar 

  34. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  35. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  CAS  PubMed  Google Scholar 

  36. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 is activated by both acidic and basic pH. J Neurosci 29:153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  CAS  PubMed  Google Scholar 

  38. Yao J, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7:e46

    Article  PubMed  Google Scholar 

  39. Hui K, Liu B, Qin F (2003) Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys J 84:2957–2968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25:8924–8937

    Article  CAS  PubMed  Google Scholar 

  41. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  42. Andersson DA, Chase HW, Bevan S (2004) TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24:5364–5369

    Article  CAS  PubMed  Google Scholar 

  43. Bandell M, Dubin AE, Petrus MJ, Orth A, Mathur J, Hwang SW, Patapoutian A (2006) High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci 9:493–500

    Article  CAS  PubMed  Google Scholar 

  44. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430: 748–754

    Article  CAS  PubMed  Google Scholar 

  45. Ryu S, Liu B, Qin F (2003) Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J Gen Physiol 122:45–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  47. Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101:15494–15499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection?. J Physiol 567:35–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Matta JA, Ahern GP (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585:469–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85:2988–3006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Premkumar LS, Agarwal S, Steffen D (2002) Single-channel properties of native and cloned rat vanilloid receptors. J Physiol 545:107–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177

    Article  CAS  PubMed  Google Scholar 

  53. Seoh SA, Sigg D, Papazian DM, Bezanilla F (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16:1159–1167

    Article  CAS  PubMed  Google Scholar 

  54. Schoppa NE, Sigworth FJ (1998) Activation of shaker potassium channels. I. Characterization of voltage-dependent transitions. J Gen Physiol 111:271–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vlachova V, Teisinger J, Susankova K, Lyfenko A, Ettrich R, Vyklicky L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23:1340–1350

    CAS  PubMed  Google Scholar 

  56. Liu B, Ma W, Ryu S, Qin F (2004) Inhibitory modulation of distal C-terminal on protein kinase C-dependent phospho-regulation of rat TRPV1 receptors. J Physiol 560:627–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840

    Article  CAS  PubMed  Google Scholar 

  58. Grandl J, Kim SE, Uzzell V, Bursulaya B, Petrus M, Bandell M, Patapoutian A (2010) Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13:708–715

    Google Scholar 

  59. Grandl J, Hu H, Bandell M, Bursulaya B, Schmidt M, Petrus M, Patapoutian A (2008) Pore region of TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11:1007–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yang F, Cui Y, Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci USA 107:7083–7088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Yao J, Liu B, Qin F (2010) Pore turret of thermal TRP channels is not essential for temperature sensing. Proc Natl Acad Sci USA 107:E125

    Google Scholar 

  62. Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F (2009) Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284:9215–9224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J 83:2118–2125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Mahieu F, Janssens A, Gees M, Talavera K, Nilius B, Voets T (2010) Modulation of the cold-activated cation channel TRPM8 by surface charge screening. J Physiol 588:315–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    Article  CAS  PubMed  Google Scholar 

  66. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501

    Article  CAS  PubMed  Google Scholar 

  67. Gilbert DL, Ehrenstein G (1969) Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J 9:447–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136

    Article  CAS  PubMed  Google Scholar 

  69. Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97:8134–8139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis JC, Treanor JJ (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295

    Article  CAS  PubMed  Google Scholar 

  71. Pedretti A, Marconi C, Bettinelli I, Vistoli G (2009) Comparative modeling of the quaternary structure for the human TRPM8 channel and analysis of its binding features. Biochim Biophys Acta 1788:973–982

    Article  CAS  PubMed  Google Scholar 

  72. Talavera K, Nilius B, Voets T (2008) Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends Neurosci 31:287–295

    Article  CAS  PubMed  Google Scholar 

  73. Cole KS, Moore JW (1960) Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J 1:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Horrigan FT, Cui J, Aldrich RW (1999) Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+. J Gen Physiol 114:277–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium 42:427–438

    Article  CAS  PubMed  Google Scholar 

  76. Ahern GP, Wang X, Miyares RL (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281:8991–995

    Article  CAS  PubMed  Google Scholar 

  77. Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054–4065

    CAS  PubMed  Google Scholar 

  78. Binshtok AM, Bean BP, Woolf CJ (2007) Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449:607–610

    Article  CAS  PubMed  Google Scholar 

  79. Myrdal SE, Steyger PS (2005) TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear Res 204:156–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Hellwig N, Plant TD, Janson W, Schafer M, Schultz G, Schaefer M (2004) TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J Biol Chem 279:7048–7054

    Article  Google Scholar 

  81. Chung MK, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564

    Article  CAS  PubMed  Google Scholar 

  82. Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    Article  CAS  PubMed  Google Scholar 

  83. Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Dwyer TM, Adams DJ, Hille B (1980) The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol 75:469–492

    Article  CAS  PubMed  Google Scholar 

  85. Yeh BI, Kim YK, Jabbar W, Huang CL (2005) Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J 24:3224–3234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Furini S, Zerbetto F, Cavalcanti S (2007) Role of the intracellular cavity in potassium channel conductivity. J Phys Chem B 111:13993–14000

    Article  CAS  PubMed  Google Scholar 

  87. Chen J, Kim D, Bianchi BR, Cavanaugh EJ, Faltynek CR, Kym PR, Reilly RM (2009) Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol Pain 5:3

    Article  PubMed Central  PubMed  Google Scholar 

  88. Banke T, Chaplan S, Wickenden AD (2010) Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol 298:C1457–C1468

    Article  CAS  PubMed  Google Scholar 

  89. Salazar H, Jara-Oseguera A, Hernandez-Garcia E, Llorente I, Arias-Olguin II, Soriano-Garcia M, Islas LD, Rosenbaum T (2009) Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol 16:704–710

    Article  CAS  PubMed  Google Scholar 

  90. Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu T (2004) Conpred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 32:W390–W393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  93. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci USA 104:10246–10251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Grandl J, Kim SE, Uzzell V, Bursulaya B, Petrus M, Bandell M, Patapoutian A (2010) Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13:708–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thanks Dr. Giulio Vistoli for kindly providing us with the PDB of the structure of the TRPM8 channel and to Dr. Fernando González-Nilo for much help and advice in TRP channel modelling. Supported by grant from the Fondo Nacional de Investigación Científica, FONDECYT 1070049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baez-Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baez-Nieto, D., Castillo, J.P., Dragicevic, C., Alvarez, O., Latorre, R. (2011). Thermo-TRP Channels: Biophysics of Polymodal Receptors. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_26

Download citation

Publish with us

Policies and ethics