Skip to main content
Log in

Isoproterenol and GTPγS inhibit L-type calcium channels of differentiating rat skeletal muscle cells

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

In adult skeletal muscle, G-proteins have been shown to modulate the calcium channels both directly and through a cAMP-dependent phosphorylating mechanism. We have investigated the action of G-proteins on the L-type calcium current in cultured rat muscle cells (myoballs) under voltage clamp in whole cell or perforated patch modes. Intracellular photolytic release of 200 μM GTPγS inhibited the L-type calcium current. Inclusion of 500 μM uncaged GTPγS in the patch pipette in the whole cell configuration reduced the calcium current by a similar amount. Under perforated patch conditions external application of 10 μM of the β-adrenergic agonist isoproterenol also reduced the calcium current. Pretreatment of the cells with pertussis toxin reversed the effect of GTPγS and removed that of isoproterenol. We conclude that rat myoballs contain β-adrenergic receptors that inhibit the L-type calcium current, and that this inhibition is mediated by a pertussis toxinsensitive G-protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ARREOLA, J., CALVO, J., GARCIA, M. C. & SANCHEZ, J. A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J. Physiol. (Lond.) 393, 307–30.

    Google Scholar 

  • Bowman, W. C. & Nott, M. W. (1969) Action of sympathomimetic amines and their antagonists on skeletal muscle. Pharmac. Rev. 21, 27–72.

    Google Scholar 

  • CARNEY, L. & DONALDSON, S. K. (1991) Inhibitory and excitatory GTPγS effects in mechanically skinned rabbit skeletal muscle fibres. Biophys. J. 59, 66A.

    Google Scholar 

  • Cognard, C., Lazdunski, M. & Romey, G. (1986) Different types of Ca channels in mammalian skeletal muscle cells in culture. Proc. Natl. Acad. Sci. USA 83, 517–21.

    Google Scholar 

  • Cognard, C., Rivet, M. & Raymond, M. (1990) The blockade of excitation-contraction coupling by nifedipine in patchclamped rat skeletal muscle cells in culture. Pflügers Arch. 416, 98–105.

    Google Scholar 

  • Curtis, B. M. & Catterall, W. A. (1985) Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 82, 2528–32.

    Google Scholar 

  • Divirgilio, F., Salviati, G., Pozzan, T. & Volpe, P. (1986) Is a guanine nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle? EMBO J 5, 259–62.

    Google Scholar 

  • Dolphin, A. C., Wootton, J. F., Scott, R. H. & Trentham, D. R. (1988) Photoactivation of intracellular guanosine triphosphate analogues reduces the amplitude and slows the kinetics of voltage-activated calcium channel currents in sensor neurones. Pflügers Arch. 411, 628–38.

    Google Scholar 

  • Garcia, J., Aldeco, R. G. & Stefani, E. (1990) Charge movement and calcium currents in skeletal muscle fibres are enhanced by GTPγS. Pflügers Arch. 417, 114–16.

    Google Scholar 

  • Gonzalez-Serratos, H., Hill, L. & Valle-Aguilera, R. (1981) Effects of catecholamines and cyclic AMP on excitation-contraction coupling in isolated skeletal muscle fibres of the frog. J. Physiol. (Lond.) 315, 267–82.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.

    Google Scholar 

  • Horn, R. & Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole cell recording method. J. Gen. Physiol. 92, 145–59.

    Google Scholar 

  • Lamb, G. D. (1991) Calcium channels or voltage sensors? Nature 352, 113.

    Google Scholar 

  • Lew, W. Y. W., Hryshko, L. V. & Bers, D. M. (1991) Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes. Circ. Res. 69, 1139–45.

    Google Scholar 

  • LIU O. Y., KARPINSKIE., BENISHIN C. G. & PANG P. K. T. (1992) Phenylephrine increases L-type calcium channel current in neonatal rat ventricular cells. FASEB J 6, A394.

  • Rapp, G. & Guth, K. (1988) A low cost high intensity flash device for photolysis experiments. Pflügfers Arch. 411, 200–3.

    Google Scholar 

  • Rios, E. & Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Phys. Rev. 71, 849–908.

    Google Scholar 

  • Rivet, M., Cognard, C. & Raymond, G. (1989) The slow inward calcium current is responsible for part of the contraction of patch-clamped rat myoballs. Pflügers Arch. 413, 316–18.

    Google Scholar 

  • Romey, G., Garcia, L., Dimitriadou, V., Pincon-Raymond, M., Rieger, F. & Lazdunski, M. (1989) Ontogenesis and localization of Ca channels in mammalian skeletal muscle in culture and role in excitation-concentration coupling. Proc. Natl. Acad. Sci. USA 86, 2933–7.

    Google Scholar 

  • Scherer, N. M., Toro, M., Entman, M. L. & Birnbaumer, L. (1978) G-protein distribution in canine cardiac sarcoplasmic reticulum and sarcolemma: comparison to rabbit skeletal muscle membranes and to brain and erythrocyte G-proteins. Arch. Biochem. Biophys. 259, 431–40.

    Google Scholar 

  • Schmid, A., Renaud, J. F. & Lazdunski, M. (1985) Short-term and long-term effects of β-adrenergic effectors and cAMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J. Biol. Chem. 260, 13041–6.

    Google Scholar 

  • Schultz, G., Rosenthal, W. & Hescheler, J. (1990) Role of G-proteins in calcium channel modulation. Ann. Rev. Physiol. 52, 275–92.

    Google Scholar 

  • Somasundaram, B., Tregear, R. T. & Trentham, D. R. (1991) GTPγS causes contraction of skinned frog skeletal muscle via the DHP-sensitive Ca channels of sealed T-tubules. Pflügers Arch. 418, 137–43.

    Google Scholar 

  • Toutant, M., Barhanin, J., Bockaert, J. & Rouot, B. (1988) G-proteins in skeletal muscle. Evidence for a 40 kDa pertussis-toxin substrate in purified transverse tubules. Biochem. J. 254, 405–9.

    Google Scholar 

  • Toutant, M., Gabrion, J., Vandaele, S., Peraldi-Roux, S., Barhanin, J., Bockaert, J. & Rouot, B. (1990) Cellular distribution and biochemical characterization of G-proteins in skeletal muscle: comparative location with voltage-dependent calcium channels. EMBO J 9, 363–9.

    Google Scholar 

  • Villaz, M., Robert, M., Carrier, L., Beeler, T., Rout, B., Toutant, M. & Dupont, Y. (1989) G-protein dependent potentiation of calcium release from sarcoplasmic reticulum of skeletal muscle. Cell Signalling 1, 493–506.

    Google Scholar 

  • Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M. & Birnbaumer, L. (1988) The stimulatory G-protein of adenylylcyclase, Gs, also stimulates dihydropyridine-sensitive Ca channels. J. Biol. Chem. 263, 9887–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somasundaram, B., Tregear, R.T. Isoproterenol and GTPγS inhibit L-type calcium channels of differentiating rat skeletal muscle cells. J Muscle Res Cell Motil 14, 341–346 (1993). https://doi.org/10.1007/BF00123099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123099

Keywords

Navigation