Skip to main content
Log in

CORCEMA evaluation of the potential role of intermolecular transferred NOESY in the characterization of ligand-receptor complexes

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We report a theoretical characterization of the intermolecular transferred NOESY (inter-TrNOESY) between ligands and receptor macromolecules that bind reversibly, using a COmplete Relaxation and Conformational Exchange MAtrix (CORCEMA) theory developed in our laboratory. We examine the dependence of inter-TrNOESY on the dissociation constant, off-rate, ligand-to-receptor ratio, and distance variations between protons of interacting species within the complex. These factors are analyzed from simulations on two model systems: (i) neuraminidase complexed to a transition-state analogue; and (ii) thermolysin complexed to a leucine-based inhibitor. The latter case utilizes a three-state model of interaction to simulate the effect of hinge-bending motions on the inter-TrNOESY. Our calculations suggest a potential role for inter-TrNOESY (when observable) and CORCEMA analysis in properly docking the ligand within the active site, and in refining the conformation of the ligand-receptor (active-site) complex. These findings have implications on the structure-based design of ligands (e.g., inhibitors) reversibly binding to receptors (e.g., enzymes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clore G.M. and Gronenborn A.M., J. Magn. Reson., 48 (1982) 402.

    Google Scholar 

  2. Clore G.M. and Gronenborn A.M., J. Magn. Reson., 53 (1983) 423.

    Google Scholar 

  3. Ni F., Prog. NMR Spectrosc., 26 (1994) 517.

    Google Scholar 

  4. Lee W. and Krishna N.R., J. Magn. Reson., 98 (1992) 36.

    Google Scholar 

  5. Ni F., J. Magn. Reson., 96 (1992) 651.

    Google Scholar 

  6. London R.E., Perlman M.E. and Davis D.G., J. Magn. Reson., 97 (1992) 79.

    Google Scholar 

  7. Lippens G.M., Cerf C. and Hallenga K., J. Magn. Reson., 99 (1992) 268.

    Google Scholar 

  8. Zheng J. and Post C.B., J. Magn. Reson., B101 (1993) 262.

    Google Scholar 

  9. Lian L.Y., Barsokov I.L., Sutcliffe M.J., Sze K.H. and Roberts G.C.K., Methods Enzymol., 239 (1994) 657.

    Google Scholar 

  10. Ni F. and Zhu Y., J. Magn. Reson., B103 (1994) 180.

    Google Scholar 

  11. Jackson P.L., Moseley H.N.B. and Krishna N.R., J. Magn. Reson., B107 (1995) 289.

    Google Scholar 

  12. Moseley, H.N.B., Curto, E.V. and Krishna, N.R., Proceedings of the 35th Experimental NMR Conference, Asilomar, CA, U.S.A., 1994, WP115.

  13. Moseley, H.N.B., Curto, E.V. and Krishna, N.R., International Symposium on NMR as a Structural Tool for Macromolecules, Indianapolis, IN, U.S.A., 1994.

  14. Moseley H.N.B., Curto E.V. and Krishna N.R., J. Magn. Reson., B108 (1995) 243.

    Google Scholar 

  15. Balaram P., Bothner-By A.A. and Breslow E., J. Am. Chem. Soc., 94 (1972) 417.

    Google Scholar 

  16. James T.L., Biochemistry, 15 (1976) 4724.

    Google Scholar 

  17. Vasak M., Nagoyama K., Wüthrich K., Mertens M.L. and Kagi J.H.R., Biochemistry, 18 (1979) 5050.

    Google Scholar 

  18. Fry D.C., Kuby S.A. and Mildvan A.S., Biochemistry, 24 (1985) 4680.

    Google Scholar 

  19. Ferrin L.F. and Mildvan A.S., Biochemistry, 24 (1985) 6904.

    Google Scholar 

  20. Anglister J. and Zilber B., Biochemistry, 29 (1990) 921.

    Google Scholar 

  21. Anglister J., Scherf T., Zilber B., Levy R., Zvi A., Hiller R. and Feigelson D., Faseb J., 7 (1993) 1154.

    Google Scholar 

  22. Plesniak L.A., Boegemann S.C., Segelke B.W. and Dennis E.A., Biochemistry, 32 (1993) 5009.

    Google Scholar 

  23. Arepalli R.S., Glaudemans C.P.J., DavesJr. G.D., Kovac P. and Bax A., J. Magn. Reson., B106 (1995) 195.

    Google Scholar 

  24. Scherf T. and Anglister J., Biophys. J., 64 (1993) 754.

    Google Scholar 

  25. Krishna N.R., Goldstein G. and Glickson J.D., Biopolymers, 19 (1980) 2003.

    Google Scholar 

  26. Choe B.Y., Cook G.W. and Krishna N.R., J. Magn. Reson., 94 (1991) 387.

    Google Scholar 

  27. Janakiraman M.N., White C.L., Laver W.G., Air G.M. and Luo M., Biochemistry, 33 (1994) 8172.

    Google Scholar 

  28. Holland D.R., Tronrud D.E., Pley H.W., Flaherty K.M., Stark W., Jansonius J.N., McKay D.B. and Matthews B.W., Biochemistry, 31 (1992) 11310.

    Google Scholar 

  29. Quiocho F.A., Curr. Opin. Struct. Biol., 1 (1991) 922.

    Google Scholar 

  30. Lumb K.J., Cheetan J.C. and Dobson C.M., J. Mol. Biol., 235 (1994) 1072.

    Google Scholar 

  31. Radmacher M., Fritz M., Hansma H.G. and Hansma P.K., Science, 265 (1994) 1577.

    Google Scholar 

  32. Lee W., Revington M., Farrow N.A., Nakamura A., Utsunomiya-Tate N., Miyake Y., Kainosho M. and Arrowsmith C.H., J. Biomol. NMR, 5 (1995) 367.

    Google Scholar 

  33. Ni F., J. Magn. Reson., B106 (1995) 147.

    Google Scholar 

  34. Nilges M., Clore G.M. and Gronenborn A.M., FEBS Lett., 239 (1988) 129.

    Google Scholar 

  35. Ikura M., Clore G.M., Gronenborn A.M., Zhu G. and Bax A., Science, 256 (1992) 632.

    Google Scholar 

  36. Wider G., Weber C., Traber H., Widmer H. and Wüthrich K., J. Am. Chem. Soc., 112 (1990) 9015.

    Google Scholar 

  37. Gemmecker G., Olejniczak E.T. and Fesik S.W., J. Magn. Reson., 96 (1992) 199.

    Google Scholar 

  38. LeMaster D.M., Methods Enzymol., 177 (1989) 23.

    Google Scholar 

  39. Nietlispach D., Clowes R.T., Broadhurst R.W., Ito Y., Keeler J., Kelly M., Ashurst J., Oschkinat H., Domaille P.J. and Lave E.D., J. Am. Chem. Soc., 118 (1996) 407.

    Google Scholar 

  40. Krishna N.R., Agresti D.G., Glickson J.D. and Walter R., Biophys. J., 24 (1978) 791.

    Google Scholar 

  41. Boelens R., Koning T.M.G. and Kaptein R., J. Mol. Struct., 173 (1988) 299.

    Google Scholar 

  42. Borgias B.A. and James T.L., Methods Enzymol., 176 (1989) 169.

    Google Scholar 

  43. Gorenstein D.G., Meadows R.P., Metz J.T., Nikonowicz E.P. and Post C.P., In Bush C.A. (Ed.) Advances in Biophysical Chemistry, JAI Press, London, U.K., 1990, pp. 47–124.

    Google Scholar 

  44. Mertz J.E., Güntert P., Wüthrich K. and Braun W., J. Biomol. NMR, 1 (1991) 257.

    Google Scholar 

  45. Xu Y., Sugár I.P. and Krishna N.R., J. Biomol. NMR, 5 (1995) 37.

    Google Scholar 

  46. Xu Y., Krishna N.R. and Sugar I., J. Magn. Reson., B107 (1995) 201.

    Google Scholar 

  47. Bonvin A.M.J.J., Boelens R. and Kaptein R., Biopolymers, 34 (1994) 39.

    Google Scholar 

  48. Xu Y. and Krishna N.R., J. Magn. Reson., B108 (1995) 192.

    Google Scholar 

  49. Yip P. and Case D.A., J. Magn. Reson., 83 (1989) 643.

    Google Scholar 

  50. Borgias B.A. and James T.L., J. Magn. Reson., 79 (1988) 493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed. A copy of the CORCEMA program may be obtained from this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curto, E.V., Moseley, H.N.B. & Krishna, N.R. CORCEMA evaluation of the potential role of intermolecular transferred NOESY in the characterization of ligand-receptor complexes. J Computer-Aided Mol Des 10, 361–371 (1996). https://doi.org/10.1007/BF00124470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124470

Keywords

Navigation