Skip to main content
Log in

Degradation of skeletal muscle plasma membrane proteins by calpain

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Observations described here provide the first demonstration that calpain (Ca2+-dependent cysteine protease) can degrade proteins of skeletal muscle plasma membranes. Frog muscle plasma membrane vesicles were incubated with calpain preparations and alterations of protein composition were revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Calpain II (activated by millimolar concentrations of Ca2+) was isolated from frog skeletal muscle, but the activity of calpain I (activated by micromolar concentrations of Ca2+) was lost during attempts at fractionation. Calpain I obtained from skeletal muscle and erythrocytes of rats was tested instead, and exerted effects similar to those of frog muscle calpain on the membrane proteins. All of the calpain preparations caused striking losses of a major membrane protein of molecular mass of approximately 97 kDa, designated band c, and diminution of a thinner band of approximately 200 kDa. There were concomitant increases in 83-and 77-kDa polypeptides. These effects were absolutely dependent on the presence of free Ca2+, and were completely blocked by calpastatin, a specific inhibitor of calpain action. Frog muscle calpain differed only in being relatively more active at 0°C than were the calpains from rat tissues. Experimental observations suggest that calpain acts at the cytoplasmic surface of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, D.W., Cadman, S. 1979. Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases.Biochim. Biophys. Acta 551:1–9

    PubMed  Google Scholar 

  2. Bennett, V. 1985. The membrane skeleton of human erythrocytes and its implications for more complex cells.Annu. Rev. Biochem. 54:273–304

    Article  PubMed  Google Scholar 

  3. Bihler, I., Charles, P., Sawh, P.C. 1980. Effects of the calcium ionophore A-23187 on the regulation of sugar transport.Cell Calcium 1:327–336

    Article  Google Scholar 

  4. Bihler, I., Sawh, P.C. 1975. Sugar transport in the perifused left atrium: Effects of contraction frequency, digitalis and ionic alterations.J. Mol. Cell. Cardiol. 7:345–355

    Article  PubMed  Google Scholar 

  5. Branton, D., Cohen, C.M., Tyler, J. 1981. Interaction of cytoskeletal proteins on the human erythrocyte membrane.Cell 24:24–32

    Article  PubMed  Google Scholar 

  6. Campbell, A.K. 1983. Calcium and cell movement.In: Intracellular Calcium: Its Universal Role as Regulator. pp. 206–256. John Wiley & Sons, Chichester, England

    Google Scholar 

  7. Clausen, T. 1980. The role of calcium in the activation of the glucose transport system.Cell Calcium 1:311–325

    Article  Google Scholar 

  8. Croall, D.E., DeMartino, G.N. 1983. Purification and characterization of calcium-dependent protease from rat heart.J. Biol. Chem. 258:5660–5665

    PubMed  Google Scholar 

  9. Croall, D.E., Morrow, J.S., DeMartino, G.N. 1986. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.Biochim. Biophys. Acta 882:287–296

    PubMed  Google Scholar 

  10. Czerwinski, M., Wasniowska, K., Steuden, I., Duk, M., Wiedlocha, A., Lisowska, E. 1988. Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3.Eur. J. Biochem. 174:647–654

    Article  PubMed  Google Scholar 

  11. Damiani, E., Margreth, A., Furlan, A., Dahms, A.S., Arnn, J., Sabbadini, R.A. 1987. Common structural domains in the sarcoplasmic reticulum Ca-ATPase and the transverse tubule Mg-ATPase.J. Cell Biol. 104:461–472

    Article  PubMed  Google Scholar 

  12. Dayton, W.R., Schollmeyer, J.V., Lepley, R.A., Cortes, L.R. 1981. A calcium-activated protease possibly involved in myofibrillar protein turnover.Biochim. Biophys. Acta 659:48–61

    PubMed  Google Scholar 

  13. Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10:2606–2617

    PubMed  Google Scholar 

  14. Franzini-Armstrong, C., Landmesser, L., Pilar, G. 1975. Size and shape of transverse tubule openings in frog twitch muscle fibers.J. Cell Biol. 64:493–497

    Article  PubMed  Google Scholar 

  15. Goodman, S.R., Krebs, K.E., Whitfield, C.F., Riederer, B.M., Zagon, I.S. 1988. Spectrin and related molecules.CRC Crit. Rev. Biochem. 23:171–234

    PubMed  Google Scholar 

  16. Hirshman, M.F., Wallberg-Henricksson, H., Wardzala, L.J., Horton, E.D., Horton, E.S. 1988. Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle.FEBS Lett. 238:235–239

    Article  PubMed  Google Scholar 

  17. Holloszy, J.O., Narahara, H.T. 1965. Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle.J. Biol. Chem. 240:3493–3500

    PubMed  Google Scholar 

  18. Holloszy, J.O., Narahara, H.T. 1967. Enhanced permeability to sugar associated with muscle contraction. Studies of the role of Ca++.J. Gen. Physiol. 50:551–562

    Article  PubMed  Google Scholar 

  19. Huston, R.V., Krebs, E.G. 1968. Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme.Biochemistry 7:2116–2122

    Article  PubMed  Google Scholar 

  20. Ishiura, S., Murofushi, H., Suzuki, K., Imahori, K. 1978. Studies of a calcium-activated neutral protease from chicken skeletal muscle. I. Purification and characterization.J. Biochem. 84:225–230

    PubMed  Google Scholar 

  21. Ivy, J.L., Holloszy, J.O. 1981. Persistent increase in glucose uptake by rat skeletal muscle following exercise.Am. J. Physiol. 241:C200-C203

    PubMed  Google Scholar 

  22. Kay, M.M.B., Goodman, S.R., Sorensen, K., Whitfield, C.F., Wong, P., Zaki, L., Rudloff, V. 1983. Senescent cell antigen is immunologically related to band 3.Proc. Natl. Acad. Sci. USA 80:1631–1635

    PubMed  Google Scholar 

  23. Lorand, L., Bjerrum, O.J., Hawkins, M., Lowe-Krentz, L., Siefring, G.E., Jr. 1983. Degradation of transmembrane proteins in Ca2+-rnriched human erythrocytes. An immunochemical study.J. Biol. Chem. 258:5300–5305

    PubMed  Google Scholar 

  24. Lorand, L., Weissmann, L.B., Epel, D.L., Bruner-Lorand, J. 1976. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins.Proc. Natl. Acad. Sci. USA 73:4479–4481

    PubMed  Google Scholar 

  25. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, F.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  26. Marban, E., Rink, T.J., Tsien, R.W., Tsien, R.Y. 1980. Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes.Nature (London) 286:845–850

    Article  Google Scholar 

  27. Mellgren, R.L. 1980. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium.FEBS Lett. 109:129–133

    Article  PubMed  Google Scholar 

  28. Mellgren, R.L. 1987. Calcium-dependent protease: An enzyme system active at cellular membranes?FASEB J. 1:110–115

    PubMed  Google Scholar 

  29. Mellgren, R.L., Repetti, A., Muck, T.C., Easly, J. 1982. Rabbit skeletal muscle calcium-dependent protease requiring millimolar Ca2+. Purification, subunit structure, and Ca2+-dependent autoproteolysis.J. Biol. Chem. 257:7203–7209

    PubMed  Google Scholar 

  30. Mitchell, R.D., Volpe, P., Palade, P., Fleischer, S. 1983. Biochemical characterization, integrity, and sidedness of purified skeletal muscle triads.J. Biol. Chem. 258:9867–9877

    PubMed  Google Scholar 

  31. Murachi, T. 1983. Intracellular Ca2+ protease and its inhibitor protein: Calpain and calpastatin.In: Calcium and Cell Function. W.Y. Cheung, editor. Vol. IV, pp. 337–410. Academic, New York

    Google Scholar 

  32. Murachi, T. 1985. The proteolytic system involving calpains.Biochem. Soc. Trans. 13:1015–1018

    PubMed  Google Scholar 

  33. Murachi, T., Hatanaka, M., Yasumoto, Y., Nakayama, N., Tanaka, K. 1981. A quantitative distribution study on calpain and calpastatin in rat tissues and cells.Biochem. Int. 2:651–656

    Google Scholar 

  34. Murachi, T., Tanaka, K., Hatanaka, M., Murakami, T. 1981. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin).In: Advances in Enzyme Regulation. G. Weber, editor. Vol. 19, pp. 407–424. Pergamon, Oxford

    Google Scholar 

  35. Murakami, T., Hatanaka, M., Murachi, T. 1981. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin).J. Biochem. 90:1809–1816

    PubMed  Google Scholar 

  36. Mykles, D.L., Skinner, D.M. 1983. Ca2+-dependent proteolytic activity in crab claw muscle. Effects of inhibitors and specificity for myofibrillar proteins.J. Biol. Chem. 258:10474–10480

    PubMed  Google Scholar 

  37. Narahara, H.T. 1987. Transverse-tubular system of skeletal muscle.In: Sarcolemmal Biochemistry. A.M. Kidwai, editor. Vol. 1, pp. 15–31. CRC Boca Raton, FL

    Google Scholar 

  38. Narahara, H.T., Green, J.D. 1983. Selective loss of a plasma membrane protein associated with contraction of skeletal muscle.Biochim. Biophys. Acta 730:71–75

    PubMed  Google Scholar 

  39. Narahara, H.T., Vogrin, V.G., Green, J.D., Kent, R.A., Gould, M.K., 1979. Isolation of plasma membrane vesicles, derived from transverse tubules, by selective homogenization of subcellular fractions of frog skeletal muscle in isotonic media.Biochim. Biophys. Acta 552:247–261

    PubMed  Google Scholar 

  40. Peachey, L.D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.J. Cell Biol. 25:209–230

    PubMed  Google Scholar 

  41. Pontremoli, S., Melloni, E. 1986. Extralysosomal protein degradation.Annu. Rev. Biochem. 55:455–481

    PubMed  Google Scholar 

  42. Pontremoli, S., Melloni, E., Sparatore, B., Salamino, F., Michetti, M., Sacco, O., Horecker, B.L. 1985. Binding to erythrocyte membrane is the physiological mechanism for activation of Ca2+-dependent neutral proteinase.Biochem. Biophys. Res. Commun. 128:331–338

    PubMed  Google Scholar 

  43. Pontremoli, S., Salamino, F., Sparatore, B. Michetti, M., Sacco, O., Melloni, E. 1985. Following association to the membrane, human erythrocyte procalpain is converted and released as fully active calpain.Biochim. Biophys. Acta 831:335–339

    PubMed  Google Scholar 

  44. Rosemblatt, M., Hidalgo, C., Vergara, C., Ikemoto, N. 1981. Immunological and biochemical properties of transverse tubule membrane isolated from rabbit skeletal muscle.J. Biol. Chem. 256:8140–8148

    PubMed  Google Scholar 

  45. Sabbadini, R.A., Okamoto, V.R. 1983. The distribution of ATPase activities in purified transverse tubular membranes.Arch. Biochem. Biophys. 223:107–119

    PubMed  Google Scholar 

  46. Steck, T.L. 1974. Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membranes.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 2, pp. 245–281. Plenum, New York

    Google Scholar 

  47. Steck, T.L. 1978. The band 3 protein of the human red cell membrane: A review.J. Supramol. Struct. 8:311–324

    PubMed  Google Scholar 

  48. Valant, P., Erlij, D. 1983. K+-stimulated sugar uptake in skeletal muscle: Role of cytoplasmic Ca2+.Am. J. Physiol. 245:C125-C132

    PubMed  Google Scholar 

  49. Wohltmann, H.J., Narahara, H.T. 1966. Binding of insulin-131I by isolated frog sartorius muscles. Relationship to changes in permeability to sugar caused by insulin.J. Biol. Chem. 241:4931–4939

    PubMed  Google Scholar 

  50. Yoshimura, N., Kikuchi, T., Sasaki, T., Kitahara, A., Hatanaka, M., Murachi, T. 1983. Two distinct Ca2+ proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney.J. Biol. Chem. 258:8883–8889

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, S.I.M., Narahara, H.T. Degradation of skeletal muscle plasma membrane proteins by calpain. J. Membrain Biol. 110, 209–216 (1989). https://doi.org/10.1007/BF01869151

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869151

Key words

Navigation