Skip to main content
Log in

Sodium gradient- and sodium plus potassium gradient-dependentl-glutamate uptake in renal basolateral membrane vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A membrane preparation enriched in the basolateral segment of the plasma membrane was isolated from the rat renal cortex by a procedure that included separation of particulates on a self-generating Percoll gradient. The uptake ofl-glutamate by the basolateral membrane vesicles was studied. A Na+ gradient ([Na+] o >[Na+] i ) stimulated the uptake ofl-glutamate and provided the driving force for the uphill transport of the acidic amino acid, suggesting a Na+-l-glutamate cotransport system in the basolateral membrane. A K+ gradient ([K+] i >[K+] o ) increased the uptake additionally. This effect was specific for K+ (Rb+). The action of the K+ gradient in enhancing the uptake ofl-glutamate had an absolute requirement for Na+. In the presence of Na+, but in the absence of a Na+ gradient. i.e., [Na+] o =[Na+] i , the K+ gradient also energized the concentrative uptake ofl-glutamate. This effect of the K+ gradient was not attributable to an alteration in membrane potential. The finding of a concentrative uptake system forl-glutamate energized by both Na+ ([Na+] o >[Na+] i and K+ ([K+] i >[K+] o ) gradients in the basolateral membrane, combined with previous reports of an ion gradient-dependent uphill transport system for this amino acid in the brush border membrane, suggests a mechanism by whichl-glutamate is accumulated intracellularly in the renal proximal tubule to extraordinarily high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aronson, P.S., Sacktor, B. 1975. The Na+ gradient-dependent transport ofd-glucose in renal brush border membranes.J. Biol. Chem. 250:6032

    Google Scholar 

  2. Barfuss, D.W., Mays, J.M., Schafer, J.A. 1980. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules.Am. J. Physiol. 238:F324

    Google Scholar 

  3. Berger, S.J., Sacktor, B. 1970. Isolation and biochemical characterization of brush borders from rabbit kidney.J. Cell Biol. 47:637

    Google Scholar 

  4. Blazer-Yost, B., Reynolds, R., Segal, S. 1979. Amino acid content of rat renal cortex and the response toin vitro incubation.Am. J. Physiol. 236:F398

    Google Scholar 

  5. Burch, H.B., Chan, A.W.K., Lowry, O.H. 1976. Direct quantitation of amino acid transport and metabolism in segments of individual nephrons.In: Current Problems in Clinical Biochemistry. U. Schmidt and U.C. Dubach, editors Vol. 6, p. 394. Hans Huber, Bern

    Google Scholar 

  6. Burckhardt, G., Kinne, R., Stange, G., Murer, H. 1980. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.Biochim. Biophys. Acta 599:191

    Google Scholar 

  7. Chesney, R.W., Sacktor, B., Rowen, R. 1973. The binding ofd-glucose to the isolated luminal membrane of the renal proximal tubule.J. Biol. Chem. 218:2182

    Google Scholar 

  8. Evers, J., Murer, H., Kinne, R. 1976. Phenylalanine uptake in isolated renal brush border vesicles.Biochim. Biophys. Acta 426:598

    Google Scholar 

  9. Glossmann, H., Neville, D.M., Jr. 1972. γ-Glutamyltransferase in kidney brush border membranes.FEBS Lett. 19:340

    Google Scholar 

  10. Heidrich, H.-G., Kinne, R., Kinne-Saffran, E., Hannig, K. 1972. The polarity of the proximal tubule cell in rat kidney.J. Cell Biol. 54:232

    Google Scholar 

  11. Kamin, H., Handler, P. 1951 Effect of infusion of single amino acids upon excretion of other amino acids.Am. J. Physiol. 164:654

    Google Scholar 

  12. Kimmich, G.A., Randles, J. 1979. Energetics of sugar transport by isolated intestinal epithelial cell: Effects of cytochalasin B.Am. J. Physiol. 237:C56

    Google Scholar 

  13. Kinne, R., Murer, H. 1978. Recent advances in the understanding of renal amino acid and sugar transport. Proc. VII Internat'l Congress Nephrology. Montreal p. 601

  14. Kornberg, A. 1955. Lactic dehydrogenase of muscle. Pyruvate+DPNH Lactate_+DPN.Meth. Enzymol. 1:441

    Google Scholar 

  15. Liang, C.T., Sacktor, B. 1977. Preparation of renal cortex basallateral and brush border membranes. Localization of adenylate cyclase and guanylate cyclase activities.Biochim. Biophys. Acta 466:474

    Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    Google Scholar 

  17. Mamelok, R.D., Groth, D.F., Prusiner, S.B. 1980. Separation of membrane-bound γ-glutamyl transpeptidase from brush border transport and enzyme activities.Biochemistry 19:2367

    Google Scholar 

  18. Melancon, S.B., Dallaire, L., Lemieux, B., Robitaille, P. Potier, M. 1977. Dicarboxylic aminoaciduria: An inborn error of amino acid conservation.J. Pediatr. 91:422

    Google Scholar 

  19. Mircheff, A.K., Os, C.H. van, Wright, E.M. 1980. Pathways for alanine transport in intestinal basal lateral membrane vesicles.J. Membrane Biol. 52:83

    Google Scholar 

  20. Mircheff, A.K., Sachs, G., Hanna, S.D., Labiner, C.S., Rabon, E., Douglas, A.P., Wlling, M.W., Wright, E.M. 1979. Highly purified basal lateral plasma membranes from rat duodenum. Physical criteria for purity.J. Membrane Biol. 50:343

    Google Scholar 

  21. Mitchell, M.E., Aronson, P.S., Sacktor, B. 1974. Further studies on the previously proposed saturable high affinity site ford-glucose in renal brush border membrane preparations.J. Biol. Chem. 249:6971

    Google Scholar 

  22. Quigley, J.P., Gotterer, G.S. 1969. Distribution of (N++K+)-stimulated ATPase activity in rat intestinal mucosa.Biochim. Biophys. Acta 173:456

    Google Scholar 

  23. Reynolds, R.A., Wald, H., McNamara, P.D., Segal, S. 1980. An improved method for isolation of basolateral membranes from rat kidney.Biochim. Biophys. Acta 601:92

    Google Scholar 

  24. Rothstein, T.L., Blum, J.J. 1973. Lysosomal physiology in Tetrahymena. I. Effects of glucose, acetate, pyruvate, and carmine on intracellular content and extracellular release of three acid hydrolases.J. Cell Biol. 57:630

    Google Scholar 

  25. Sacktor, B. 1977. The brush border of the renal proximal tubule and the intestinal mucosa.In: Mammalian Cell Membranes. G.A. Jamieson and D.M. Robinson, editors. Vol. 4, p. 221, Butterworths, London

    Google Scholar 

  26. Sacktor, B. 1977. Transport in membrane vesicles isolated from the mammalian kidney and intestine.Curr. Top. Bioenerg. 6:39

    Google Scholar 

  27. Sacktor, B. 1978. Mechanisms and specificities of amino acid transport in proximal tubule luminal membrane vesicles.In: Renal Function. G.H. Giebisch and E.F. Purcell, editors. p. 221. Josiah Macy, Jr. Foundations, New York

    Google Scholar 

  28. Sacktor, B., Schneider, E.G. 1980. The singular effect of an internal K+ gradient (K i +>K o +) on the Na+ gradient (Na o +>Na i +)-dependent transport ofl-glutamate in renal brush border membrane vesicles.Int. J. Biochem. 12:229

    Google Scholar 

  29. Scalera, V., Storelli, C., Storelli-Joss, C., Haase, W., Murer, H. 1980. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells.Biochem. J. 186:177

    Google Scholar 

  30. Schneider, E.G. 1979. The effect of internal K+ gradient (K i +>K o +) on the Na+-dependent transport ofl-glutamate by rabbit renal brush border membrane vesicles.Fed. Proc. 38:244

    Google Scholar 

  31. Schneider, E.G., Hammerman, M.R., Sacktor, B. 1980. Sodium gradient-dependentl-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.J. Biol. Chem. 255:7650

    Google Scholar 

  32. Schneider, E.G., Sacktor, B. 1980. Sodium gradient-dependentl-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular>extravesicular potassium gradient.J. Biol. Chem. 255:7645

    Google Scholar 

  33. Scott, D.M., Pateman, J.A. 1978. The acidic amino acid transport system of the baby hamster kidney cell line BHK21-C13.Biochim. Biophys. Acta 508:379

    Google Scholar 

  34. Scriver, C.R., Rosenberg, L.E. 1973. Amino acid metabolism and its disorders.In: Major Problems in Clinical Pediatrics Series. p. 147: W. B. Saunders, Philadelphia

    Google Scholar 

  35. Slack, E.N., Liang, C.T., Sacktor, B. 1977. Transport ofl-proline andd-glucose in luminal (brush border) and contraluminal (basal-lateral) membrane vesicles from the renal cortex.Biochem. Biophys. Res. Commun. 77:891

    Google Scholar 

  36. Teijema, H.L., Gelderen, H.H. van, Giesberts, M.A.H., Laurent de Angulo, M.S.L. 1974. Dicarboxylic aminoaciduria: An inborn error of glutamate and aspartate transport with metabolic implications, in combination with a hyperprolinemia.Metabolism 23:115

    Google Scholar 

  37. Ullrich, K.J., Rumrich, G., Kloss, S. 1974. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney.Pfluegers Arch. 351:49

    Google Scholar 

  38. Webber, W.A. 1963. Characteristics of acidic amino acid transport in mammalian kidney.Can. J. Biochem. Physiol. 41:131

    Google Scholar 

  39. Weiss, S.D., McNamara, P.D., Pepe, L.M., Segal, S. 1978. Glutamine and glutamic acid uptake by rat renal brushborder membrane vesicles.J. Membrane Biol. 43:91

    Google Scholar 

  40. Wharton, D.C., Tzagoloff, A. 1967. Cytochrome oxidase from beef heart mitochondria.Meth. Enzymol. 10:245

    Google Scholar 

  41. Young, J.A., Freedman, B.S., 1971. Renal tubular transport of amino acids.Clin. Chem. 17:245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacktor, B., Rosenbloom, I.L., Liang, C.T. et al. Sodium gradient- and sodium plus potassium gradient-dependentl-glutamate uptake in renal basolateral membrane vesicles. J. Membrain Biol. 60, 63–71 (1981). https://doi.org/10.1007/BF01870833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870833

Keywords

Navigation