Skip to main content
Log in

Mutations in the M1 region of the nicotinic acetylcholine receptor alter the sensitivity to inhibition by quinacrine

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Site directed mutagenesis was used to alter the structure ofTorpedo californica nicotinic acetylcholine receptor (nAChR) and to identify amino acid residues which contribute to noncompetitive inhibition by quinacrine. Mutant receptors were expressed inXenopus laevis oocytes injected within vitro synthesized mRNA and the whole cell currents induced by acetylcholine (ACh) were recorded by two electrode voltage clamp.

2. A series of mutations of a highly conserved Arg at position 209 of theα subunit ofTorpedo californica nAChR revealed that positively charged amino acids are required for functional receptor expression. Mutation of Arg to Lys (αR209K) or His (αR209H) at position 209 shifted the EC50 for ACh slightly from 5µM to 12µM and increased the normalized maximal channel activity 8.5-and 3.2-fold, respectively.

3. These mutations altered the sensitivity of nAChR to noncompetitive inhibition by quinacrine. The extent of inhibition of ion channel function by quinacrine was decreased as pH increased in both wild type and mutant nAChR suggesting that the doubly charged form of quinacrine was responsible for the inhibition.

4. Further mutations at different positions of theα subunit suggest the contribution of Pro and Tyr residues at positions 211 and 213 to quinacrine inhibition whereas mutationsαI210A andαL212A did not have any effects. None of these mutations changed the sensitivity of nAChR to inhibition by a different noncompetitive inhibitor, chlorpromazine.

5. These findings support a hypothesis that the quinacrine binding site is located in the lumen of the ion channel. In addition, the quantitative effect of point mutations at alternate positions on the sensitivity of quinacrine inhibition suggests that the secondary structure at the beginning of M1 region might beβ sheet structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, P. R., and Feltz, A. (1980a). Quinacrine (mepacrine) action at frog end-plate.J. Physiol. 306:261–281.

    PubMed  Google Scholar 

  • Adams, P. R., and Feltz, A. (1980b). End-plate channel opening and the kinetics of quinacrine (mepacrine) block.J. Physiol. 306:283–306.

    PubMed  Google Scholar 

  • Arias, H. R., Valenzuela, C. F., and Johnson, D. A. (1993a). Quinacrine and ethidium bind to different loci on theTorpedo acetylcholine receptor.Biochemistry 32:6237–6242.

    PubMed  Google Scholar 

  • Arias, H. R., Valenzuela, C. F., and Johnson, D. A. (1993b). Transverse localization of the quinacrine binding site on theTorpedo acetylcholine receptor.J. Biol. Chem. 268:6348–6355.

    PubMed  Google Scholar 

  • Barish, M. E. (1983). A transient calcium-dependent chloride current in the immatureXenopus oocyte.J. Physiol. 3423:309–325.

    Google Scholar 

  • Betz, H. (1990). Ligand gated channels in the brain: The amino acid receptor superfamily.Neuron 5:383–392.

    PubMed  Google Scholar 

  • Changeux, J. P., Pinset, C., and Ribera, A. B. (1986). Effects of chlorpromazine and phencyclidine on mouse C2 acetylcholine receptor kinetics.J. Physiol. 378:497–513.

    PubMed  Google Scholar 

  • Cox, R. N., Kaldany, R. R. J., DiPaola, M., and Karlin, A. (1985). Time-resolved photolabeling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine receptor in a transient, agonist-induced site.J. Biol. Chem. 260:7186–7193.

    PubMed  Google Scholar 

  • Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J. Y., Lazure, C., Cretien, M., and Changeux, J. P. (1988) Amino acids of theTorpedo marmorata acetylcholine receptorα subunit labeled by a photoaffinity ligand for the acetylcholine binding site.Biochemistry 27:2346–2357.

    PubMed  Google Scholar 

  • DiPaola, M., Czajkowski, C., and Karlin, A. (1989). The sidedness of the COOH terminus of the acetylcholine receptor delta subunit.J. Biol. Chem. 264:15457–15463.

    PubMed  Google Scholar 

  • DiPaola, M., Kao, P. N., and Karlin, A. (1990). Mapping theα-subunit site photolabeled by the noncompetitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor.J. Biol. Chem. 265:11017–11029.

    PubMed  Google Scholar 

  • Galzi, J. L., Revah, F., Black, D., Goeldner, M., Hirth, C., and Changeux, J. P. (1990). Identification of a novel amino acid alpha-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites.J. Biol. Chem. 265:10430–10437.

    PubMed  Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Hamont, P. Y., Lederer, F., and Changeux, J. P. (1987). Structure of the high-affinity site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in theβ andδ chains.Biochemistry 26:2410–2418.

    PubMed  Google Scholar 

  • Giraudat, J., Gali, J., Revah, F., Changeux, J. P., Haumont, P., and Lederer, F. (1989). The noncompetitive blocker [3H]chlorpromazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptor alpha-subunit.Febs. Lett. 253:190–198.

    PubMed  Google Scholar 

  • Heidmann, T., and Changeux, J. P. (1986). Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H] chlorpromazine: additional evidence for the open channel conformation.Biochemistry 25:6109–6113.

    PubMed  Google Scholar 

  • Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction.Gene 77:51–59.

    PubMed  Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, M., Kurasaki, M., Bujo, H., Fujita, Y., and Numa, S. (1986). Location of aδ subunit region determining ion transport through the acetylcholine receptor.Nature 324:670–674.

    PubMed  Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J. M., Bujo, H., Mori, Y., Fukuda, M., and Numa, S. (1988). Fings of negatively charged amino acids determine the acetylcholine receptor channel conductance.Nature 335:645–648.

    PubMed  Google Scholar 

  • Karlin, A. (1991). Explorations of the nicotinic acetylcholine receptor.The Harvey Lectures 85:71–107.

    Google Scholar 

  • Lee, Y.-H., Lasalde, J., Rojas, L., McNamee, M., Ortiz-Miranda, S. I., and Pappone, P. (1994). Mutations in the M4 Domain ofTorpedo californica acetylcholine receptor dramatically alter ion channel function.Biophys. J. 66:646–653.

    PubMed  Google Scholar 

  • Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N., and Lester, H. A. (1988). Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor.Science 242:1578–1581.

    PubMed  Google Scholar 

  • Li, L., Schuchard, M., Palma, A., Pradier, L., and McNamee, M. G. (1990). Functional role of the cycteine 451 thiol group in the M4 helix of the gamma subunit of theTorpedo californica acetylcholine receptor.Biochemistry 29:5428–5436.

    PubMed  Google Scholar 

  • Massari, S. (1975). The interaction of atebrin with phospholipid vesicles.Biochim. Biophys. Acta 375:22–34.

    PubMed  Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S. (1984). Expression of functional acetylcholine receptor from cloned cDNAs.Nature 307:604–608.

    PubMed  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S. (1983). Structural homology ofTorpedo californica acetylcholine receptor subunits.Nature 302:528–532.

    PubMed  Google Scholar 

  • Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittman-Liebold, P., and Hucho, F. (1986). The reaction site of a noncompetitive antagonist in the delta subunit of the nicotinic acetylcholine receptor.EMBO J. 5:1815–1819.

    PubMed  Google Scholar 

  • Oswald, R., and Changeux, J. P. (1981). Ultraviolet light-induced labelling by noncompetitive blockers of the acetylcholine receptor fromTorpedo marmorata.Proc. Natl. Acad. Sci. USA 78:3925–3929.

    PubMed  Google Scholar 

  • Pradier, L., and McNamee, M. G. (1992). The nicotinic acetylcholine receptor. In Yeagle, P. (ed.),The Structure of Biological Membranes, Telford, Caldwell, NJ, pp. 1047–1106.

    Google Scholar 

  • Unwin, N. (1993a). Neurotransmitter action: opening of ligand-gated ion channels.Cell 72 (suppl.):31–41.

    PubMed  Google Scholar 

  • Unwin, N. (1993b). Nicotinic acetylcholine receptor at 9 Å resolution.J. Mol. Biol. 229:1101–1124.

    PubMed  Google Scholar 

  • Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state.Nature 373:37–43.

    PubMed  Google Scholar 

  • Valenzuela, C. F., Kerr, J. A., and Johnson, D. A. (1992). Quinacrine binds to the lipid-protein interface of theTorpedo acetylcholine receptor: A fluorescence study.J. Biol. Chem. 267:8238–8244.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamamizu, S., Todd, A.P. & McNamee, M.G. Mutations in the M1 region of the nicotinic acetylcholine receptor alter the sensitivity to inhibition by quinacrine. Cell Mol Neurobiol 15, 427–438 (1995). https://doi.org/10.1007/BF02071878

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02071878

Key words

Navigation