Skip to main content
Log in

Cytochrome P4503A (CYP3A) metabolism: Prediction ofIn Vivo activity in humans

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

CYP3A is one of the most important cytochrome P450 isoforms responsible for drug metabolism by humans because it is the major such enzyme in critical tissues such as the gastrointestinal tract and liver, and it is involved in the oxidative biotransformation of numerous clinically useful therapeutic agents. Many factors regulate CYP3A expression but these are being increasingly defined so that the disposition characteristics of a drug whose metabolism is importantly mediated by this isoform can be reasonably well predicteda priori. For example, metabolic clearance is distributed within a population in a unimodal fashion but marked (5- to 20-fold) interindividual variability is present as a consequence of both genetic and nongenetic factors. In addition, firstpass metabolism occurs following oral drug administration and this may be extensive so that bioavailability is low. CYP3A activity can also be readily modulated by inducers like rifampicin and several anticonvulsant agents, and many potent inhibitors exist such as azole antifungal agents and macrolide antibiotics. Accordingly, the potential for drug interactions with these drugs as well as other CYP3A substrates, when given concomitantly, is high. Metabolism involving CYP3A is also likely to be affected by liver disease as well as aging, and modest differences may be present between men and women but these are often clinically unimportant. Because of such predictability, knowledge of the role and importance of CYP3A in the metabolism of a putative drug candidate is becoming increasingly desirable at an early stage in the development process.In vitro studies using human liver preparations, including microsomes, cultured hepatocytes and heterologous expressed enzymes, can provide important insights in this regard. This is particularly the case for identifying potential drug interactions whose clinical significance can be subsequently assessed. Data with respect to terfenadine and cyclosporine obtained several years after their approval and marketing, indicate that, if available and applied during their development, the paradigm of usingin vitro studies to rationally direct and prioritize clinical studies would have prospectively prevented the serious adverse effects and inefficacy that were only recognized during their empiric clinical use. Such examples, along with those associated with the genetic polymorphism of CYP2D6, provide strong justification for establishing the role and importance of individual CYP isoforms in a candidate drug's metabolism at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. P. Guengerich. Human cytochrome P450 enzymes. In P. R. Ortiz de Montellano (ed.),Cytochrome P450: Structure, Mechanism, and Biochemistry, Plenum Press, New York, 1995, pp. 473–535.

    Chapter  Google Scholar 

  2. S. A. Wrighton, M. VandenBranden, and B. J. Ring. The human drug metabolizing cytochromes P450.J. Pharmacokin. Biopharm. 24:461–473 (1996).

    Article  CAS  Google Scholar 

  3. P. B. Watkins. Case studies—the gut.J. Pharmacokin. Biopharm. (in press).

  4. E. R. Schuetz, J. D. Schuetz, W. M. Grogan, A. N. Fejes-Troth, G. Fejes-Troth, J. Raucy, P. Guezelian, K. Gionela, and C. O. Watlington, Expression of cytochrome P4503A in amphibian, rat and human kidney.Arch. Biochem. Biophys. 294:206–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. F. P. Guengerich.In vitro techniques for studying drug metabolism.J. Pharmacokin. Biopharm. 24:521–533 (1996).

    Article  CAS  Google Scholar 

  6. C.-Y. Wu, L. Z. Benet, M. F. Herbert, S. K. Gupta, M. Rowland, D. Y. Gomez, and V. J. Wacher. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine.Clin. Pharmacol. Ther. 58:492–497 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. K. E. Thummel, D. O'Shea, M. F. Paine, D. D. Shen, K. L. Lunze, J. D. Perkins, and G. R. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism.Clin. Pharmacol. Ther. 59:491–502 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. D. Reimers and A. Ježek. Rifampicin und andere antituberkulotika bei gleichzeitiger oraler kontrazeption.Prax. Pneumol. 25:255–262 (1971).

    CAS  PubMed  Google Scholar 

  9. D. Janz and D. Schmidt. Anti-epileptic drugs and failure of oral contraceptives.Lancet 1:1113 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. D. G. Bailey, J. M. O. Arnold, and J. D. Spence. Grapefruit juice and drugs: How significant is the interaction?Clin. Pharmacokin. 26:91–98 (1994).

    Article  CAS  Google Scholar 

  11. M. P. Ducharme, L. H. Warbasse, and D. J. Edwards. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice.Clin. Pharmacol. Ther. 57:485–491 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. H. H. T. Kupferschmidt, H. R. Ha, W. H. Ziegler, P. J. Meier, and S. Krähenbühl. Interaction between grapefruit juice and midazolam in humans.Clin. Pharmacol. Ther. 58:20–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. R. Z. Harris, L. Z. Benet, and J. B. Schwartz. Gender effects in pharmacokinetics and pharmacodynamics.Drugs 50:222–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. G. Castañeda-Hernández, C. Hoyo-Vadillo, J. A. Palma-Aguirre, and F. J. Flores-Murrieta. Pharmacokinetics of oral nifedipine in different populations.J. Clin. Pharmacol. 33:140–145 (1993).

    Article  PubMed  Google Scholar 

  15. A. Sowunmi, T. J. Rashid, O. O. Akinyinka, and A. G. Renwick. Ethnic differences in nifedipine kinetics: Comparisons between Nigerians, Caucasians and South Asians.Br. J. Clin. Pharmacol. 40:489–493 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. C. C. Peck, R. A. Temple, and J. M. Collins. Understanding consequences of concurrent therapies.J. Am. Med. Assoc. 269:1550–1552 (1993).

    Article  CAS  Google Scholar 

  17. D. A. Gartiez, R. H. Hook, B. J. Walker, and R. A. Okerholm. Pharmacokinetics and biotransformation studies of terfenadine in man.Arzneim Forsch. 32:1185–1190 (1982).

    Google Scholar 

  18. R. A. Okerholm, D. L. Weiner, R. H. Hook, B. J. Walker, G. A. Leeson, S. A. Biedenbach, M. J. Cawein, T. D. Dusebout, G. J. Wright, M. Myers, V. Schindler, and C. E. Cook. Bioavailability of terfenadine in man.Biopharm. Drug Dispos. 2: 185–190 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. R. L. Woosley, Y. Chen, J. P. Freiman, and R. A. Gillis. Mechanism of the cardiotoxic actions of terfenadine.J. Am. Med. Assoc. 269:1532–1536 (1993).

    Article  CAS  Google Scholar 

  20. T. K. Daneshmend and D. W. Warnock. Clinical pharmacokinetics of ketoconazole.Clin. Pharmacokin. 14:13–34 (1988).

    Article  CAS  Google Scholar 

  21. P. K. Honig, D. C. Wortham, K. Zamani, D. P. Conner, J. C. Mullin, and L. R. Cantilena. Terfenadine-ketoconazole interaction: Pharmacokinetic and electrocardiographic consequences.J. Am. Med. Assoc. 269:1513–1518 (1993).

    Article  CAS  Google Scholar 

  22. S. Pohjola-Sintonen, M. Viitasalo, L. Toivonen, and P. Neuvonen. Intraconazole prevents terfenadine metabolism and increase risk of torsades de pointes ventricular tachycardia.Eur. J. Clin. Pharmacol. 45:191–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. P. K. Honig, D. C. Wortham, R. Hull, K. Zamani, J. E. Smith, and L. R. Cantilena. Intraconazole affects single-dose terfenadine pharmacokinetics and cardiac repolarization pharmacodynamics.J. Clin. Pharmacol. 33:1201–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. P. K. Honig, D. C. Wortham, K. Zamani, J. C. Mullin, D. P. Conner, and L. R. Cantilena. The effect of fluconazole on the steady-state pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine in humans.Clin. Pharmacol. Ther. 53:630–636 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. P. K. Honig, R. L. Woosley, K. Zamani, D. P. Conner, and L. R. Cantilena. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin.Clin. Pharmacol. Ther. 52:231–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. P. K. Honig, D. C. Wortham, K. Zamani, and L. R. Cantilena. Comparison on the effect of the macrolide antibiotics erythromycin, clarithromycin and azithromycin on terfenadine steady-state pharmacokinetics and electrocardiographic parameters.Drug Invest. 7:148–156 (1994).

    Article  CAS  Google Scholar 

  27. M. Eller, M. Stoltz, R. Okerholm, and B. McNutt. Effect of hepatic disease on terfenadine and terfenadine metabolite pharmacokinetics.Clin. Pharmacol. Ther. 53:162 (1994).

    Google Scholar 

  28. B. P. Monahan, C. L. Ferguson, E. S. Killeavy, B. K. Lloyd, J. Troy, and L. R. Cantilena. Torsades de pointes occurring in association with terfenadine use.J. Am. Med. Assoc. 264:2788–2790 (1990).

    Article  CAS  Google Scholar 

  29. S. M. Tsunoda and F. T. Aweeka. The use of therapeutic drug monitoring to optimise immunosuppressive therapy.Clin. Pharmacokin. 30:107–140 (1996).

    Article  CAS  Google Scholar 

  30. T. Kronbach, V. Fischer, and U. A. Meyer. Cyclosporine metabolism in human liver: Identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs.Clin. Pharmacol. Ther. 43:630–635 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. J. Combalbert, I. Fabre, G. Fabre, I. Dalet, J. Derancourt, J. P. Cano, and P. Maurel. Metabolism of cyclosporin A: IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily.Drug Metab. Dispos. 17:197–207 (1989).

    CAS  PubMed  Google Scholar 

  32. G. C. Yee and T. R. McGuire. Pharmacokinetic drug interactions with cyclosporin.Clin. Pharmacokin. 19:319–332, 400–415 (1990).

    Article  CAS  Google Scholar 

  33. L. Pichard, I. Fabre, G. Fabre, J. Domergue, B. S. Aubert, G. Mourad, and P. Maurel. Cyclosporin A drug interactions: Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes.Drug Metab. Dispos. 18:595–606 (1990).

    CAS  PubMed  Google Scholar 

  34. A. D. Rodrigues. Use ofin vitro human metabolism studies in drug development: An industrial perspective.Biochem. Pharmacol. 48:2147–2156 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. P. Skett, C. Tyson, A. Guillouzo, and P. Maier. Report on the international workshop on the use of humanin vitro liver preparations to study drug metabolism in drug development.Biochem. Pharmacol. 50:280–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. L. Z. Benet. The hypothesized preclinical use of drug metabolism isoforms.J. Pharmacokin. Biopharm. (in press).

  37. R. L. Smith and R. R. Shah. Basic biochemical features and molecular genetics of CYP2D6.J. Pharmacokin. Biopharm. (in press).

  38. P. B. Watkins. Noninvasive tests of CYP3A enzymes.Pharmacogenetics 4:171–184 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by grant GM31304 from the U.S. Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, G.R. Cytochrome P4503A (CYP3A) metabolism: Prediction ofIn Vivo activity in humans. Journal of Pharmacokinetics and Biopharmaceutics 24, 475–490 (1996). https://doi.org/10.1007/BF02353475

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353475

Key Words

Navigation