Skip to main content
Log in

Alterations of the mucosal immune system in inflammatory bowel disease

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The normal intestinal immune system is under a balance in which proinflammatory and anti-inflammatory cells and molecules are carefully regulated to promote a normal host mucosal defense capability without destruction of intestinal tissue. Once this careful regulatory balance is disturbed, nonspecific stimulation and activation can lead to increased amounts of potent destructive immunologic and inflammatory molecules being produced and released. The concept of balance and regulation of normal mucosal immune and inflammatory events is indicative of how close the intestine is to developing severe inflammation. The normal intestinal mucosal immune system is constantly stimulated by lumenal contents and bacteria. The stimulatory molecules present in the intestinal lumen that activate and induce subsequent mucosal immunologic and inflammatory events include bacterial cell wall products, such as peptidoglycans and lipopolysaccharides, as well as other chemotactic and toxic bacterial products that are produced by the many different types of bacteria within the gastrointestinal tract. These highly stimulatory bacterial cell wall products are capable of activating macrophages and T lymphocytes to release potent proinflammatory cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). IL-1, IL-6, and TNF-α increase the presence of human leukocyte antigen (HLA) class II antigen-presenting molecules on the surfaces of epithelial cells, endothelial cells, macrophages, and B cells, thus increasing their ability to present lumenal antigens and bacterial products. The proinflammatory cytokines IL-1 and TNF-α also increase the ability of epithelial cells, endothelial cells, macrophages, and fibroblasts to secrete potent chemotactic cytokines, such as interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), which serve to increase the movement of macrophages and granulocytes from the circulation into the inflamed mucosa. Thus, through lumenal exposure to potent, nonspecific stimulatory bacterial products, the state of activation of the intestinal immune system and mucosal inflammatory pathways are markedly up-regulated. This raises the question of whether there is a deficiency in effective down-regulation through the absence of normally suppressive cytokines such as interleukin-10 (IL-10), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and IL-1 receptor antagonist. Normally, the turning off of the active and destructive immunologic and inflammatory events should occur following the resolution of a bacterial or viral infection that has been appropriately defended against and controlled by the mucosal immune system. In inflammatory bowel disease (IBD), however, the down-regulatory events and processes that should turn off the immunologic and inflammatory protective processes, once the pathogenic agent has been cleared, appear to be deficient or only partially effective. We may find that we ultimately are dealing with disease processes that have more than one genetic or cellular basis. The improved understanding of the immunopathophysiology of IBD will allow exploration of novel immunologic and genetic approaches, such as gene replacement therapy, administration of a suppressor cytokine or an altered cell surface antigen, the administration ofhumanized monoclonal antibodies directed against proinflammatory cytokines, or the development of newer strategies against fundamenial cell biologic mechanisms such as adhesion molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mestecky J. The common mucosal immune system and current strategies for inducation of immune responses in external secretions. J Clin Immunol 1987;7:265–276.

    Article  PubMed  CAS  Google Scholar 

  2. Mestecky J, McGhee JR. Immunoglobulin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987;40:153–245.

    PubMed  CAS  Google Scholar 

  3. MacDermott RP, Stenson WF. Alterations in the mucosal immune system in ulcerative colitis and Crohn's disease. Adv Immunol 1988;42:285–323.

    PubMed  CAS  Google Scholar 

  4. MacDermott RP. Alterations in the mucosal immune system in ulcerative colitis and Crohn's disease. Med Clin North Am 1994;78:1207–1231.

    PubMed  CAS  Google Scholar 

  5. Dinarello CA. Biology of interleukin-1. FASEB J 1988;2:108–115.

    PubMed  CAS  Google Scholar 

  6. Kawanishi H, Saltzman LE, Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in murine gutassociated lymphoid tissues. I. T cells derived from Peyer's patches that switch sIgM B cells in vitro. J Exp Med 1983;157:433–450.

    Article  PubMed  CAS  Google Scholar 

  7. Kawanishi H, Saltzman L, Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in murine gutassociated lymphoid tissues. II. Terminal differentiation of postswitch sIgA-bearing Peyer's patch B cells. J Exp Med 1983;158:649–669.

    Article  PubMed  CAS  Google Scholar 

  8. Coffmann RL, Shrader B, Carty J, et al. A mouse T cell product that preferentially enhances IgA production. I. Biologic characterization. J Immunol 1987;139:3685–3690.

    Google Scholar 

  9. Brandtzaeg P, Sollid LM, Thrane PS, et al. Lymphoepithelial interactions in the human mucosal immune system. Gut 1988;29:1116–1130.

    PubMed  CAS  Google Scholar 

  10. MacDermott RP, Nahm MH. Expression of human immunoglobulin G subclassed in inflammatory bowel disease. Gastroenterology 1987;93:1127–1129.

    PubMed  CAS  Google Scholar 

  11. Scott MG, Nahm MH, Macke K, et al. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: Differences between ulcerative colitis, Crohn's disease and controls. Clin Exp Immunol 1986;66:209–215.

    PubMed  CAS  Google Scholar 

  12. MacDermott RP. Altered secretion patterns of IgA and IgG subclasses by IBD intestinal mononuclear cells. In: Geobell H, Peskar BM, Malchow H, (eds) Inflammatory bowel diseases—basic research and clinical implications. Lancaster, England: MTP Press 1988;105–111.

    Google Scholar 

  13. MacDermott RP, Nash GS, Auer IO, et al. Alterations in serum IgG subclasses in patients with ulcerative colitis and Crohn's disease (abstract). Gastroenterology 1989;94:A275.

    Google Scholar 

  14. Peters MG, Secrist H, Anders KR, et al. Normal human intestinal B lymphocytes: Increased activation compared to peripheral blood. J Clin Invest 1989;83:1827–1833.

    PubMed  CAS  Google Scholar 

  15. Schreiber S, MacDermott RP, Raedler A, et al. Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 1991;101:1020–1030.

    PubMed  CAS  Google Scholar 

  16. Schreiber S, Nash GS, Raedler A, Pinnau R, Bertovich MJ, MacDermott RP. Human lamina propria mononuclear cells are activated in inflammatory bowel disease. In: Tsuchiya M (ed) Frontiers of mucosal immunology. Amsterdam: Elsevier, 1991:749–753.

    Google Scholar 

  17. Schreiber S, Raedler A, Conn AR, et al. Increased in vitro release of soluble interleukin-2 receptor by colonic lamina propria mononuclear cells in inflammatory bowel disease. Gut 1992;33:236–241.

    PubMed  CAS  Google Scholar 

  18. Van Spreeuwel JP, Lindeman J, Meijer ACJLM. A quantitative study of immunoglobulin-containing cells in the differential diagnosis of acute colitis. J Clin Pathol 1985;38:774–777.

    PubMed  Google Scholar 

  19. Heiner DC. Significance of immunoglobulin G (IgG) subclasses. Am J Med 1984;76:1.

    Article  PubMed  CAS  Google Scholar 

  20. Oxelius VA. Immunoglobulin G (IgG) subclasses and human disease. Am J Med 1984;76:7–18.

    Article  PubMed  CAS  Google Scholar 

  21. Targan SR, Landers CJ, Cobb L, et al. Perinuclear anti-neutrophil cytoplasmic antibodies are spontaneously produced by mucosal B cells of ulcerative colitis patients. J Immunol 1995;155:3262–3267.

    PubMed  CAS  Google Scholar 

  22. Halstensen TS, Mollnes TE, Brandtzaeg P. Persistent complement activation in submucosal blood vessels of active inflammatory bowel disease: Immunohistochemical evidence. Gastroenterology 1989;97:10–19.

    PubMed  CAS  Google Scholar 

  23. Halstensen TS, Mollnes TE, Fausa O, Brandtzaeg P. Deposits of terminal complement complex (TCC) in muscular mucosa and submucosal vessels in ulcerative colitis and Crohn's disease of the colon. Gut 1989;30:361–366.

    PubMed  CAS  Google Scholar 

  24. Ahrenstedt O, Knutson L, Nilsson B, et al. Enhanced local production of complement components in the small intestines of patient with Crohn's disease. N Engl J Med 1990;322:1345–1349.

    PubMed  CAS  Google Scholar 

  25. Saverymuttu SH, Chadwick VS, Hodgson HJ. Granulocyte migration in ulcerative colitis. Eur J Clin Invest 1985;15:60–68.

    PubMed  CAS  Google Scholar 

  26. Saverymuttu SH, Peters AM, Lavender JP, Chadwick VS, Hodgson JH. In vivo assessment of granulocyte migration to diseased bowellin Crohn's disease. Gut 1985;26:378–383.

    PubMed  CAS  Google Scholar 

  27. Scholmerich J, Schmidt E, Schumichen C, et al. Scintigraphic assessment of bowel involvement and disease activity in Crohn's disease using99mtechnetium hexamethyl propylene amine oxine as leukocyte label. Gastroenterology 1988;95:1287–1293.

    PubMed  CAS  Google Scholar 

  28. Pullman WE, Sullivan PJ, Barrett PJ, et al. Assessment of inflammatory bowel disease activity by99mtechnetium phagocyte scanning. Gastroenterology 1988;95:989–996.

    PubMed  CAS  Google Scholar 

  29. Isaacs KL, Sartor RB, Haeskil JS. Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 1992;103:1587–1595.

    PubMed  CAS  Google Scholar 

  30. Stevens C, Walz G, Zanker B. Interleukin-6, interleukin-1-beta and tumor necrosis factor: Expression in inflammatory bowel disease (abstract). Gastroenterology 1990;98:A475.

    Google Scholar 

  31. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin-1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis or Crohn's disease. Gut 1989;30:835–838.

    PubMed  CAS  Google Scholar 

  32. Cominelli F, Dinarello CA. Interleukin-1 in the pathogenesis of and protection from inflammatory bowel disease. Biotherapy 1989;1:369–375.

    Article  PubMed  CAS  Google Scholar 

  33. Cominelli F, Nast CC, Clark BD, et al. Interleukin-1 (IL-1) gene expression, synthesis and effect of specific IL-1 receptor blockade in rabbit immune complex colitis. J Clin Invest 1990;86:972–980.

    PubMed  CAS  Google Scholar 

  34. Reinecker H-C, Steffen M, Witthoeft T, et al. Enhanced secretion of TNF-alpha, IL-6, and IL-1-beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 1993;94:174–181.

    PubMed  CAS  Google Scholar 

  35. MacDonald TT, Choy MY, Hutchings P, Cooke A. Activated T cells and macrophages in the intestinal mucosa of children with inflammatory bowel disease. In: MacDonald TT, Chalacombe SJ, Bland PW, Stokes CR, Heatley RV, Mowat AM (eds) Advances in mucosal immunology. Boston: Kluwer, 1990:683–690.

    Google Scholar 

  36. MacDonald TT, Hutchings P, Choy MY, et al. Tumor necrosis factor-alpha and interferon-gamma production measured at the single-cell level in normal and inflamed human intestine. Clin Exp Immunol 1990;81:301–305.

    PubMed  CAS  Google Scholar 

  37. Borgeat P, Samuelsson B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. J Biol Chem 1979;254:2643–2646.

    PubMed  CAS  Google Scholar 

  38. Stenson WF, Parker CW. Leukotrienes. Adv Intern Med 1984;30:175–199.

    PubMed  CAS  Google Scholar 

  39. Sharon P, Stenson WF: Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 1984;86:453–460.

    PubMed  CAS  Google Scholar 

  40. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J. Effects of systemic prednisolone on arachidonic acid metabolites determined by equilibrium in vivo dialysis of rectum in severe relapsing ulcerative colitis (abstract). Gastroenterology 1985;88:A1466.

    Google Scholar 

  41. Ford-Hutchinson WW, Bray MA, Doig MV. Leukotriene B, a potent chemotactic and aggregating substance released from polymorphonuclear leukocytes. Nature 1984;266:264–265.

    Google Scholar 

  42. Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ. Neurophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin-1 (IL-1). J Immunol 1987;39:788–793.

    Google Scholar 

  43. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene intercine cytokine family. Annu Rev Immunol 1991;9:617–648.

    PubMed  CAS  Google Scholar 

  44. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin-8: A novel cytokine that activates neutrophils. J Clin Invest 1989;84:1045–1049.

    PubMed  CAS  Google Scholar 

  45. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 1994;55:97–179.

    PubMed  CAS  Google Scholar 

  46. Matsushima K, Morishita K, Yoshimura T, et al. Molecular cloning of human monocyte-derived neutrophil chemotactic factor (MDNCF) and induction of MDNCF mRNA by interleukin-1 and tumor necrosis factor. J Exp Med 1988;167:1883–1893.

    Article  PubMed  CAS  Google Scholar 

  47. Standiford TJ, Kunkel SL, Basha MA, et al. Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine network in the lung. J Clin Invest 1990;86:1945–1953.

    PubMed  CAS  Google Scholar 

  48. Miller MD, Krangel MS. Biology and chemistry of the chemokines: A family of chemotactic and inflammatory cytokines. Cirt Rev Immunol 1992;12:17–46.

    CAS  Google Scholar 

  49. Yoshimura T, Leonard EJ, Human monocyte chemoattractant protein-1 (MCP-1). Adv Exp Med Biol 1991;305:47–56.

    PubMed  CAS  Google Scholar 

  50. Loetscher P, Seitz M, Clark-Lewis I, et al. Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3 are major attractants for human CD4+ AND CD8+ T lymphocytes. FASEB J 1994;8:1055–1060.

    PubMed  CAS  Google Scholar 

  51. Barker JN, Sarma V, Mitra RS, et al. Marked synergism between tumor necrosis factor-alpha and interferon-gamma in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest 1990;85:605–608.

    PubMed  CAS  Google Scholar 

  52. Tobler A, Meier R, Seitz M, et al. Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 1992;79:45–51.

    PubMed  CAS  Google Scholar 

  53. Standiford TJ, Strieter RM, Kasahara K, Kumkel SL. Disparate regulation of interleukin 8 gene expression from blood monocytes, endothelial cells, and fibroblasts by interleukin 4. Biochem Biophys Res Commun 1990;171:531–536.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshimura T, Leonard EJ. Secretion by human fibroblasts of monocyte chemoattractant protein-1, the product of gene JE. J Immunol 1990;144:2377–2383.

    PubMed  CAS  Google Scholar 

  55. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J 1994;8:504–512.

    PubMed  CAS  Google Scholar 

  56. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration. The multistep paradigm. Cell 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  57. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990;4:2868–2880.

    PubMed  CAS  Google Scholar 

  58. Butcher EC. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 1991;67:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  59. Bevilacqua M, Nelson RM. Selectins. J Clin Invest 1993;91:379–381.

    PubMed  CAS  Google Scholar 

  60. Lasky LA. Selectins: Interpreters of cell-specific carbohydrate intormation during inflammation. Science 1992;258:964–969.

    PubMed  CAS  Google Scholar 

  61. Rollins BJ, Walz A, Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood 1991;78:1112–1116.

    PubMed  CAS  Google Scholar 

  62. Kelvin DJ, Michiel DF, Johnston JA, et al. Chemokines and serpentines: The molecular biology of chemokine receptors. J Leukoc Biol 1993;54:604–612.

    PubMed  CAS  Google Scholar 

  63. Grob PM, David E, Warren TC, et al. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8. J Biol Chem 1990;265:8311–8316.

    PubMed  CAS  Google Scholar 

  64. Samanta AK, Oppenheim JJ, Matsushima K. Interleukin-8 (monocyte-derived neutrophil chemotactic factor) dynamically regulates its own receptor expression on human neutrophils. J Biol Chem 1990;265:183–189.

    PubMed  CAS  Google Scholar 

  65. Holmes WE, Lee J, Kuang WJ, et al. Structure and functional expression of a human interleukin-8 receptor. Science 1991;253:1278–1280.

    PubMed  CAS  Google Scholar 

  66. Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 1991;253:1280–1283.

    PubMed  CAS  Google Scholar 

  67. Yoshimura T, Leonard EJ. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J Immunol 1990;145:292–297.

    PubMed  CAS  Google Scholar 

  68. Lee J, Horuk R, Rice GC, et al. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 1992;267:16283–16287.

    PubMed  CAS  Google Scholar 

  69. Gayle RB 3d, Sleath PR, Srinivason S, et al. Importance of the amino terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem 1993;268:7283–7289.

    PubMed  CAS  Google Scholar 

  70. Ahuja SK, Gao JL, Murphy PM. Chemokine receptors and molecular mimicry. Immunol Today 1994;15:281–287.

    Article  PubMed  CAS  Google Scholar 

  71. Wang JM, Sherry B, Fivash MJ, et al. Human recombinant macrophage inflammatory protein-1 alpha and-beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. J Immunol 1993;150:3022–3029.

    PubMed  CAS  Google Scholar 

  72. Oh KO, Zhou Z, Kim KK, et al. Identification of cell surface receptors for murine macrophage inflammatory protein-1 alpha. J Immunol 1991;147:2978–2983.

    PubMed  CAS  Google Scholar 

  73. Wang JM, McVicar DW, Oppenheim JJ, Kelvin DJ. Identification of RANTES receptors on human monocytic cells: Competition for binding and desensitization by homologous chemotactic cytokines. J Exp Med 1993;177:699–705.

    Article  PubMed  CAS  Google Scholar 

  74. Schroöder JM. Generation of NAP-1 and related peptides in psoriasis and other inflammatory skin diseases. Cytokines 1992;4:54–76.

    CAS  Google Scholar 

  75. Seitz M, Dewald B, Gerber N, Baggiolini M. Enhanced production of neutrophil-activating peptide-1/interleukin-8 rheumatoid arthritis. J Clin Invest 1991;87:463–469.

    PubMed  CAS  Google Scholar 

  76. Rampart M, Herman AG, Grillet B, et al. Development and application of a radioimmunoassay for interleukin-8: Detection of interleukin-8 in synovial fluids from patients with inflammatory joint disease. Lab Invest 1992;66:512–518.

    PubMed  CAS  Google Scholar 

  77. Koch AE, Kunkel SL, Harlow LA, et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 1992;90:772–779.

    PubMed  CAS  Google Scholar 

  78. Carre PC, Mortenson RL, King TE Jr, et al. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest 1991;88:1802–1810.

    PubMed  CAS  Google Scholar 

  79. Mahida YR, Ceska M, Effenberger F, et al. Enhanced synthesis of neutrophil-activating peptide-1/interleukin-8 in active ulcerative colitis. Clin Science 1992;82:273–275.

    CAS  Google Scholar 

  80. Izzo RS, Witkon K, Chen AI, et al. Interleukin-8 and neutrophil markers in colonic mucosa from patients with UC. Am J Gastroenterol 1992;87:1447–1452.

    PubMed  CAS  Google Scholar 

  81. Hommes DW, Jansen J, Smit F, et al. Enhanced production of interleukin-8 in ulcerative colitis. Gastroenterology 1992;102:A927.

    Google Scholar 

  82. Izutani R, Ohyanagi H, MacDermott RP. Quantitative PCR for detection of fetogram quantities of interleukin-8 mRNA expression. Microbiol Immunol 1994;38:233–237.

    PubMed  CAS  Google Scholar 

  83. Izutani R, Loh EY, Reinecker H-C, et al. Increased expression of interleukin-8 mRNA in ulcerative colitis and Crohn's disease mucosa and epithelial cells. Inflamm Bowel Dis 1995;1:37–47.

    Google Scholar 

  84. Reinecket HC, Loh EY, Ringler DJ, et al. Monocytechemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 1995;108:40–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDermoit, R.P. Alterations of the mucosal immune system in inflammatory bowel disease. J Gastroenterol 31, 907–916 (1996). https://doi.org/10.1007/BF02358624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02358624

Keywords

Navigation