Skip to main content
Log in

Distribution of histone deacetylases 1–11 in the rat brain

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although protein phosphorylation has been characterized more extensively, modulation of the acetylation state of signaling molecules is now being recognized as a key means of signal transduction. The enzymes responsible for mediating these changes include histone acetyl transferases and histone deacetylases (HDACs). Members of the HDAC family of enzymes have been identified as potential therapeutic targets for diseases ranging from cancer to ischemia and neurode generation. We initiated a project to conduct comprehensive gene expression mapping of the 11 HDAC isoforms (HDAC1-11) (classes I, II, and IV) throughout the rat brain using high-resolution in situ hybridization (ISH) and imaging technology. Internal and external data bases were employed to identify the appropriate rat sequence information for probe selection. In addition, immunohistochemistry was performed on these samples to separately examine HDAC expression in neurons, astrocytes, oligodendrocytes, and endothelial cells in the CNS. This double-labeling approach enabled the identification of specific cell types in which the individual HDACs were expressed. The signals obtained by ISH were compared to radiolabeled standards and thereby enabled semiquantitative analysis of individual HDAC isoforms and defined relative levels of gene expression in >50 brain regions. This project produced an extensive atlas of 11 HDAC isoforms throughout the rat brain, including cell type localization, providing a valuable resource for examining the roles of specific HDACs in the brain and the development of future modulators of HDAC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya M. R., Sparreboom, A., Venitz J., and Figg W. D. (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol. Pharmacol. 68, 917–932.

    Article  PubMed  CAS  Google Scholar 

  • Ajamian F., Suuronen T., Salminen A., and Reeben M. (2003) Upregulation of class II histone deacetylases mRNA during neural differentiation of cultured rat hippocampal progenitor cells. neurosci. Lett. 346, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Alarcon J. M., Malleret G., Touzani K., et al. (2004) Chromatin acetylation memory, and LTP are impaired in CBP+/−mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959.

    Article  PubMed  CAS  Google Scholar 

  • Araki T., Sasaki Y., and Milbrandt J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  • Bereshchenko O. R., Gu W., and Dalla-Favera R. (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613.

    Article  PubMed  CAS  Google Scholar 

  • Bolger T. A. and Yao T. P. (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–9553.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury C. A., Khanim G. L., Hayden R., et al. (2005). Histone deacetylase in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751–1759.

    Article  PubMed  CAS  Google Scholar 

  • Broide R. S., Trembleau A., Ellison J. A., et al. (2004) Standardized quantitative in situ hybridization using radioactive oligonucleotide probes for detecting relative levels of mRNA transcripts verified by real-time PCR. Brain Res. 1000 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Camelo S., Iglesias A. H., Hwang D., et al. (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 164, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Chiurazzi P., Pomponi M. G., Pietrobono R., Bakker C. E., Neri G., and Oostra B. A. (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet. 8, 2317–2323.

    Article  PubMed  CAS  Google Scholar 

  • Choi J. H., Oh S. W., Kang M. S., et al. (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 92, 1300–1304.

    PubMed  CAS  Google Scholar 

  • Choi J. H., Kwon H. J., Yoon B. I., et al. (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M. and Marks P. A. (2005) Prospects: histone deacetylase inhibitors. J. Cell. Biochem. 96, 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Emerich D. F., Skinner S. J., Borlongan C. V., Vasconcellos A. V., and Thanos C. G. (2005) The choroid plexus in the rise, fall and repair of the brain. Bioessays 27, 262–274.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante R. J., Kublius J. K., Lee J., et al. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427.

    PubMed  CAS  Google Scholar 

  • Franklin K. B. J. and Paxinos G. (1997) The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA.

    Google Scholar 

  • Gao L., Cueto M. A., Asselbergs F., and Atadja P. (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 24,748–25,755.

    Google Scholar 

  • Gardian G., Yang L., Cleren C., Calingasan N. Y., Klivenyi P., and Beal M. F. (2005) Neuroprotective effects of phenylbutyrate in the N171-82O transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556–563.

    PubMed  CAS  Google Scholar 

  • Gardian G., Browne S. E., Choi D. K., et al. (2004) Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromol. Med. 5, 235–241.

    Article  CAS  Google Scholar 

  • Gregoretti I. V., Lee Y. M., and Goodson H. V. (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Haggarty S. J., Koeller K. M., Wong J. C., Grozinger C. M., and Schreiber, S. L. (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U. S. A. 100, 4389–4394.

    Article  PubMed  CAS  Google Scholar 

  • Hao Y., Creson T., Zhang L., et al. (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci. 24, 6590–6599.

    Article  PubMed  CAS  Google Scholar 

  • Hockly E., Richon V. M., Woodman B., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M., Tagawa K., Okuda T., et al. (2003) Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem., 87, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Caramori G., Lim S., et al. (2002) Expression and activity of histone deacetylases in human asthmatic airways. Am. J. Respir. Crit. Care Med. 166, 392–396.

    Article  PubMed  Google Scholar 

  • Ito K. K., Ito M., Elliott W. M., et al. (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976.

    Article  PubMed  CAS  Google Scholar 

  • Jeong M. R., Hashimoto, R., Senatorov V. V., et al. (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 542, 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone R. W. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y., Kovacs J. J., McLaruin A., Vance J. M., Ito, A., and Yao T. P. (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738.

    Article  PubMed  CAS  Google Scholar 

  • Kelly W. K., O'Connor O. A., Krug L. M., et al. (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 23, 3923–3931.

    Article  PubMed  CAS  Google Scholar 

  • Kouraklis G. and Theocharis S. (2002) Histone deacetylase inhibitors and anticancer therapy. Curr. Med. Chem. Anti-Cancer Agents 2, 477–484.

    Article  CAS  Google Scholar 

  • Langley B., Gensert J. M., Beal M. F., and Ratan R. R. (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as noveland broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord. 4, 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Lin A. Y. (2005) Histone deacetylase activity and COPD, author reply. N. Engl. J. Med. 353, 528, 529.

    Article  PubMed  CAS  Google Scholar 

  • Marks P. A., Miller T., and Richon V. M. (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351.

    Article  PubMed  CAS  Google Scholar 

  • Marks P. A., Richon V. M., Miller T., and Kelley W. K. (2004) Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168.

    Article  PubMed  CAS  Google Scholar 

  • Moradei O., Maroun C. R., Paquin I., and Vaisburg A. (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr. Med. Chem. Anti-Cancer Agents 5, 529–560.

    Article  CAS  Google Scholar 

  • Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H., and Tanaka M. (2004) Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287.

    Article  PubMed  CAS  Google Scholar 

  • Panteleeva I., Rouaux C., Larmet Y., Boutillier S., Loeffler J. P., and Boutillier A. L. (2004) HDAC-3 participates in the repression of e2f-dependent gene transcription in primary differentiated neurons. Ann. N. Y. Acad. Sci. 1030, 656–660.

    Article  PubMed  CAS  Google Scholar 

  • Ren M., Leng Y., Jeong M., Leeds P. R., and Chuang D. M. (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367.

    Article  PubMed  CAS  Google Scholar 

  • Richon V. M., Zhou X., Rifkind R. A., and Marks P. A. (2001) Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cell Mol. Dis. 27, 260–264.

    Article  CAS  Google Scholar 

  • Robyr D., Suka Y., Xenarios I., et al. (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases Cell 109, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Roth S.Y., Denu J. M., and Allis C. D. (2001) Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.

    Article  PubMed  CAS  Google Scholar 

  • Saha R. N. and Pahan K. (2005) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 39, 539–550.

    Google Scholar 

  • Shabbeer S., and Carducci M. A. (2005) Focus on deacetylation for therapeutic benefit. Investigational Drugs 8, 144–154.

    CAS  Google Scholar 

  • Shen S., Li J., and Casaccia-Bonnefil P. (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell. Biol. 169, 577–589.

    Article  PubMed  CAS  Google Scholar 

  • Vaghefi H., and Neet K. E. (2004) Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 23, 8078–8087.

    Article  PubMed  CAS  Google Scholar 

  • Voelter-Mahlknecht S., Ho A. D., and Mahlknecht, U. (2005) Chromosomal organization and locolization of the novel class IV human histone deacetylase 11 gene. Int. J. Mol. Med. 16, 589–598.

    PubMed  CAS  Google Scholar 

  • Yamaguchi M., Tonou-Fujimori N., Komori A., et al. (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132, 3027–3043.

    Article  PubMed  CAS  Google Scholar 

  • Yu X., Guo Z. S., Marcu M. G., et al. (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst. 94, 504–513.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher. J. Winrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broide, R.S., Redwine, J.M., Aftahi, N. et al. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31, 47–58 (2007). https://doi.org/10.1007/BF02686117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686117

Index Entries

Navigation