Skip to main content
Log in

Neuronal signaling systems and ethanol dependence

  • Original Articles
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In recent years there have been remarkable developments toward the understanding of the molecular and/or cellular changes in the neuronal second-messenger pathways during ethanol dependence. In general, it is believed that the cyclic adenosine 3′, 5′-monophosphate (cAMP) and the phosphoinositide (PI) signal-transduction pathways may be the intracellular targets that mediate the action of ethanol and ultimately contribute to the molecular events involved in the development of ethanol tolerance and dependence. Several laboratories have demonstrated that acute ethanol exposure increases, whereas protracted ethanol exposure decreases, agonist-stimulated adenylate cyclase activity in a variety of cell systems, including the rodent brain. Recent studies indicate that various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein kinase A [PKA], and cAMP-responsive element binding protein [CREB]) in the rodent brain are also modulated by chronic ethanol exposure. The PI signal-transduction cascade represents another important second-messenger system that is modulated by both acute and chronic ethanol exposure in a variety of cell systems. It has been shown that protracted ethanol exposure significantly decreases phospholipase C (PLC) activity in the cerebral cortex of mice and rats. The decreased PLC activity during chronic ethanol exposure may be caused by a decrease in the protein levels of the PLC-Β1 isozyme but not of PLC-δ1 or PLC-γ1 isozymes in the rat cerebral cortex. Protein kinase C (PKC), which is a key step in the Pi-signaling cascade, has been shown to be altered in a variety of cell systems by acute or chronic ethanol exposure. It appears from the literature that PKC plays an important role in the modulation of the function of various neurotransmitter receptors (e.g., γ-aminobutyrate type A [GABAa], N-methyl-D-aspartate [NMDA], serotonin2A [5-HT2a], and 5-HT2C, and muscarinic [m1] receptors) resulting from ethanol exposure. The findings described in this review article indicate that neuronal-signaling proteins represent a molecular locus for the action of ethanol and are possibly involved in the neuroadaptational mechanisms to protracted ethanol exposure. These findings support the notion that alterations in the cAMP and the PI-signaling cascades during chronic ethanol exposure could be the critical molecular events associated with the development of ethanol dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan A. M. and Harris R. A. (1987) Acute and chronic ethanol treatments alter GABA receptoroperated chloride channels.Pharmacol. Biochem. Behav. 27, 665–670.

    Article  PubMed  CAS  Google Scholar 

  • Ailing C., Gutavsson L., Larsson C., Lundquist C., Rodriguez D., and Simonsson P. (1994) Adaptation of signal transduction in brain, inToward a Molecular Basis of Alcohol Use and Abuse. (Jansson B., Jornvall H., Rydberg U., Terenius L. and Vallee B. L. (eds.) Birkhauser Verlag, Basal, Switzerland, pp. 19–28.

    Google Scholar 

  • Allison J. H. and Cicero T. J. (1980) Alcohol acutely depresses myo-inositol 1-phosphate levels in the male rat cerebral cortex.J. Pharmacol. Exp. Ther. 213, 24–27.

    PubMed  CAS  Google Scholar 

  • Andrade J. P., Fernando P. M., Madeira M. D., Paula-Barbosa M. M., Cadete-Leite A., and Zimmer J. (1992) Effects of chronic alcohol consumption and withdrawal on the somatostatinimmunoreactive neurons of the rat hippocampal dentate hilus.Hippocampus 2, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Battaini F., Vesco, R. D., Govoni S., and Trabucchi M. (1989) Chronic alcohol intake modifies phorbol ester binding in selected rat brain areas.Alcohol 6, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Berridge M. J. (1987) Inositol trisphosphate and diacyl glycerol: two interacting second messengers.Ann. Rev. Biochem. 56, 159–193.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. (1993) Inositol trisphosphate and calcium signaling.Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Bito H., Deisseroth K., and Tsien R. W. (1996) CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression.Cell 87, 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Blizter R. D., Gil, O., and Landau E. M. (1990) Longterm potentiation in rat hippocampus is inhibited by low concentrations of ethanol.Brain Res. 537, 203–208.

    Article  Google Scholar 

  • Bode D. C. and Molinoft P. B. (1988). Effects of ethanol in vitro on the beta-adrenergic receptorcoupled adenylate cyclase system.J. Pharmacol. Exp. Ther. 246, 1040–1047.

    PubMed  CAS  Google Scholar 

  • Cockcroft S. and Thomas M. H. (1992) Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors.Biochem.J. 288, 1–14.

    PubMed  CAS  Google Scholar 

  • Coe I. R., Dohrman D. P., Constantinescu A., Dia-mond I., and Gordon A. S. (1996) Activation of cyclic AMP-dependent protein kinase reverses tolerance of a nucleotide transporter to ethanol.J. Pharmacol. Exp. Ther. 276, 365–369.

    PubMed  CAS  Google Scholar 

  • Collins S., Caron M. G., and Lefkowitz R. J. (1992) From ligand binding to gene expression: new insights into the regulation of G protein-coupled receptors.TIPS 1, 37–39.

    Google Scholar 

  • Comb M., Hyman S. E., and Goodman H. M. (1987) Mechanism of trans-synaptic regulation of the gene expression.TINS 10, 473–478.

    CAS  Google Scholar 

  • Condorelli D. E., Dell’ Albani P., Muelo G., Timmusk T., and Belluardo N. (1994) Expression of neurotrophins and their receptors in primary astroglial cultures. Induction by cyclic AMP-ele-vating agents.J. Neurochem. 63, 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Deitrich R. A. and Harris R. A. (1996) How much alcohol should I use in my experiments?Alcohol: Clin. Exp. Res. 20, 1–2.

    Article  CAS  Google Scholar 

  • DePetrillo P. B. (1994) Effects of chronic alcohol use and age on human lymphocyte protein kinase C activity.Pharmacol. Biochem. Behav. 48, 999–1004.

    Article  PubMed  CAS  Google Scholar 

  • DePetrillo P. B. and Liou C. S. (1993) Ethanol exposure increases total protein kinase C activity in human lymphocytes.Alcohol. Clin. Exp. Res. 17, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • DePetrillo P. B. and Swift R. M. (1992) Ethanol exposure results in a transient decrease in human platelet cAMP levels: evidence for a protein kinase C mediated process.Alcohol. Clin. Exp. Res. 16, 290–294.

    Article  PubMed  CAS  Google Scholar 

  • Devaud L. L., Fristschy J-M., Sieghart W., and Mor-row A. L. (1997) Bidirectional alterations of GABAa receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal.J. Neurochem. 69, 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Diamond I., Wrubel B., Estrin W., and Gordon A. (1987) Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients.Proc. Natl. Acad. Sci. USA 84, 1413–1416.

    Article  PubMed  CAS  Google Scholar 

  • Fisher S. K., Heacock A. M., and Agranoff B. W. (1992) Inositol lipids and signal transduction in the nervous system: an update.J. Neurochem. 58, 18–38.

    Article  PubMed  CAS  Google Scholar 

  • Gilman A. G. (1989) G proteins and regulation of adenylyl cyclase.JAMA 6, 1819–1825.

    Article  Google Scholar 

  • Glencourse T. A., Bateson A. N., and Darlison M. G. (1992) Differential localization of two alternatively spliced GABAa receptor γ2-subunit mRNA’s in chick brain.Eur. J. Neurosci 4, 271–277.

    Article  Google Scholar 

  • Goldstein D. B. (1976) Pharmacological aspects of physical dependence on ethanol.Life Sci. 18, 553–561.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales G. A. and Montminy M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serin.Cell 59, 675–680.

    Article  Google Scholar 

  • Gonzales G. A., Yamamoto K. K., Fischer W. H., Karr D., Menzel P., Biggs W., Vale W. W., and Montminy M. R. (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequences.Nature 337, 749–752.

    Article  Google Scholar 

  • Gonzales R. A. and Crews F. T. (1988) Effects of ethanol in vivo and in vitro on stimulated phosphoinositide hydrolysis in rat cortex and cerebellum.Alcohol. Clin. Exp. Res. 12, S94-S98.

    Article  Google Scholar 

  • Gordon A. S., Collier K. and Diamond I. (1986) Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neuronal cell line: an in vitro model of cellular tolerance to ethanol.Proc. Natl. Acad. Sci. USA 83, 2105–2108.

    Article  PubMed  CAS  Google Scholar 

  • Gordon A. S., Yao L., Wu Z., Coe I. R., and Diamond I. (1997) Ethanol alters the subcellular localization of δ-and ε-protein kinase C in NG 108–15 Cells.Mol. Pharmacol. 52, 554–559.

    PubMed  CAS  Google Scholar 

  • Grant K. A. and Lovinger D. M. (1995) Cellular and behavioral neurobiology of alcohol.Clin. Neurosci. 3, 155–164.

    PubMed  CAS  Google Scholar 

  • Grant K. A., Valverius P., Hudspith M., and Tabakoff B. (1990) Ethanol withdrawal seizures and NMDA receptor complex.Eur. J. Pharmacol. 176, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Gulya K., Grant K. A., Valverius P., Hoffman P. L., and Tabakoff B. (1991) Brain regional specificity and time course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal.Brain Res. 547, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. A. and Buck K. J. (1990) The processes of alcohol tolerance and dependence.Alcohol World Health Res. 14, 105–110.

    Google Scholar 

  • Harris R. A., McQuilkin S. T., Paylor R., Abeliovich A., Tonegawa S., and Wehner J. M. (1995) Mutant mice lacking the γ-isoform of protein kinase C show decreased behavioral actions of ethanol and altered functions of y-aminobutyrate type A receptors.Proc. Natl. Acad. Sci. USA 92, 3658–3662.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman P. L. and Tabakoff B. (1990) Ethanol and guanine nucleotide binding proteins: a selective interaction.Fed. Am. Soc. Exp. Biol. J. 4, 2612–2622.

    CAS  Google Scholar 

  • Hoffman P. L., Moses F., Luthin G. R., and Tabakoff B. (1986) Acute and chronic effects of ethanol on receptor-mediated phosphatidylinositol 4,5-bisphosphate breakdown in mouse brain.Mol. Pharmacol. 30, 13–18.

    PubMed  CAS  Google Scholar 

  • Katsura M., Ohkuma S., Chen D.-Z., and Kuriyama K. (1994) Ethanol-induced alteration in activities of cerebral phosphatidylinositol 4,5-bisphosphate specific and cytosolic phospholipase C in the brain: analysis using NG 108–15 cells and brains from ethanol-inhaled mice.Neurochem. Int. 24, 541–547.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs K. A., Kavanagh T. J., and Costa L. G. (1995) Ethanol inhibits muscarinic receptor-stimulated phosphoinositide metabolism and calcium mobilization in rat primary cortical cultures.Neurochem. Res. 20, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Kruger H., Wilce P. A., and Shanley B. C. (1993) Ethanol and protein kinase C in rat brain.Neurochem. Int. 22, 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J., Lehman T. C., Frankenfield C. D., Zwaagstra J. C., and Watson P. A. (1992) Molecular diversity in the adenylyl cyclase family: evidence for eight forms of the enzyme and cloning of type VI.J. Biol. Chem. 267, 24858–24862.

    PubMed  CAS  Google Scholar 

  • Larsson C., Simonsson P., Hoek J. B., and Ailing C. (1995) Ethanol inhibits the peak of muscarinic receptor-stimulated formation of inositol 1,4,5-trisphosphate in neuroblastoma SH-SY-5Y cells.Biochem. Pharmacol. 50, 647–654.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg-Kraag B., May T., Schmidt L. G., and Rommelspacher H. (1995) Changes of G protein levels in platelet membranes from alcoholics during short-term and long-term abstinence.Alcohol Alcohol 30, 455–464.

    PubMed  CAS  Google Scholar 

  • Lin T-A., Navidi M., James W., Lin T-N., and Sun G. Y. (1993) Effects of acute ethanol administration on polyphosphoinositide turnover and levels of inositol 1,4,5-trisphosphate in mouse cerebrum and cerebellum.Alcohol. Clin. Exp. Res. 17, 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R. L. (1995) Ethanol, γ-aminobutyrate type A receptors and protein kinase C phosphorylation.Proc. Natl. Acad. Sci. USA 92, 3633–3635.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R. L. and Olsen R. W. (1994) GABAa receptor channels.Ann. Rev. Neurosci. 17, 569–602.

    PubMed  CAS  Google Scholar 

  • MacLennan A. T., Lee N., and Walker D. W. (1995) Chronic ethanol administration decreases brainderived neurotrophic factor gene expression in the rat hippocampus.Neurosci. Eetter. 197, 105–108.

    Article  CAS  Google Scholar 

  • McKenzie F. R. and Milligan G. (1990) Prostaglandin E1-mediated, cyclic AMP-independent, downregulation of Gsα in neuroblastoma x glioma hybrid cells.J. Biol. Chem. 265, 17084–17093.

    PubMed  CAS  Google Scholar 

  • Messing R. O., Peterson P. J., and Henrich C. J. (1991) Chronic ethanol exposure increases levels of protein kinase C δ, ε and protein kinase Cmediated phosphorylation in cultured neural cells.J. Biol. Chem. 266, 23,428–23,432.

    CAS  Google Scholar 

  • Mihic S. J. and Harris R. A. (1995) Alcohol actions at the GABAa receptor/chloride channel complex, inPharmacological Effects of Ethanol on the Nervous System. Deitrich R. A. ed. CRC Press, Boca Raton, FL pp. 51–72.

    Google Scholar 

  • Minami K., Minami M., and Harris R. A. (1997) Inhibition of 5-hydroxytryptamine type 2A receptorinduced currents by n-alcohols and anesthetics.J. Pharmacol. Exp. Ther. 281, 1136–1143.

    PubMed  CAS  Google Scholar 

  • Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.Neuron 12, 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, A. L. (1995) Regulation of GABAa receptor function and gene expression in the central nervous system.Int. Rev. Neurobiol. 38, 1–41.

    PubMed  CAS  Google Scholar 

  • Nagy L. E., Diamond I., and Gordon A. (1988) Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction.Proc. Natl. Acad. Sci. USA 85, 6973–6976.

    Article  PubMed  CAS  Google Scholar 

  • Neer E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals.Cell 80, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Ohno S., Akita Y., Hata A., Osada S-C, Kubo K., Konno Y., Akimoto K., Mizuno K., Saito T., Kuroki T., and Suzuki K. (1991) Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional PKC and novel nPKC.Adv. Enzyme Regulation 31, 287–303.

    Article  CAS  Google Scholar 

  • Pandey S. C., Dwivedi Y., Piano M. R., Schwartz D. W., Davis J. M., and Pandey G. N. (1993) Chronic ethanol consumption decreases the phorbol ester binding to membranal but not cytosolic protein kinase C in rat brain.Alcohol 10, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S. C. (1996) Acute and chronic ethanol consumption effects on the immunolabeling of Gq/11 α subunit protein and phospholipase C isozymes in the rat brain.J. Neurochem. 67, 2355–2361.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S. C. and Ailing C. (1996) Protein kinase C: molecular and cellular targets for the action of ethanol.Alcohol. Clin. Exp. Res. 20, 67A-71A.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S. C. and Pandey G. N. (1996) Modulation of serotonin2A/2C receptors and these receptorlinked phosphoinositide system by ethanol.Behav. Brain Res. 73, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S. C., Pandey G. N., and Smith T. L. (1996) Chronic ethanol effects on the expression of phospholipase C isozymes and Gq/11 protein in primary cultures of astrocytes.Alcohol 13, 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S. C., Zhang D., and Nayyar D. (1997) Acute and protracted ethanol consumption effects on the CREB and AP-1 gene transcription factors in the rat brain.Alcohol. Clin. Exp. Res. 21 (3), 76A.

    Google Scholar 

  • Rabin R. A. (1993) Ethanol-induced desensitization of adenylate cyclase: role of the adenosine receptor and GTP-binding proteins.J. Pharmacol. Exp. Ther 264, 977–983.

    PubMed  CAS  Google Scholar 

  • Rhee S. G. and Choi K. D. (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes.J. Biol. Chem. 267, 12393–12396.

    PubMed  CAS  Google Scholar 

  • Ritchie T., Kim H.S., Cole R., DeVellis J., and Noble E. P. (1988) Alcohol-induced alterations in phosphoinositide hydrolysis in astrocytes.Alcohol 5, 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Rius R. A., Govoni S., Battaini E., and Trabucchi M. (1986) Cyclic AMP-dependent protein phosphorylation is reduced in rat striatum after chronic ethanol treatment.Brain Res. 365, 355–359.

    Article  PubMed  CAS  Google Scholar 

  • Robin R. A. (1990) Chronic ethanol exposure of PC 12 cells alters adenylate cyclase activity and intracellular cyclic AMP content.J. Pharmacol. Exp. Ther. 252, 1021–1027.

    Google Scholar 

  • Rodriguez F. D., Simonsson P., Gustavsson L., and Ailing C. (1992) Mechanisms of adaptation to the effects of ehtanol on activation of phospholipase C in NG 108–15 cells.Neuropharmacology 31, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Saeed Dar M. (1997) Mouse cerebellar adenosinergic modulation of ethanol-induced motor incoordination: possible involvement of cAMP.Brain Res. 749, 263–274.

    Article  Google Scholar 

  • Saito H., Nishida A., Shimizu M., Motohashi N., and Yamawaki S. (1996a) Effects of chronic ethanol treatment on inositol 1,4,5-trisphosphate receptors and inositol 1,3,4,5-tetrabisphosphate receptors in the rat brain.Neuropsychobiology 33, 60–65.

    PubMed  CAS  Google Scholar 

  • Saito H., Nishida A., Shimizu M., Motohashi N., and Yamawaki S. (1996b) Decreased inositol 1,4,5-trisphosphate-specific binding in platelets from alcoholic subjects.Biol. Psychiatr. 40, 886–891.

    Article  CAS  Google Scholar 

  • Saito T., Lee J. M., and Tabakoff B. (1985) Ethanol’s effects on cortical adenylate cyclase activity.J. Neurochem. 44, 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  • Saito T., Lee J. M., Hoffman P. L., and Tabakoff B. (1987) Effects of chronic ethanol treatment on the beta-adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex.J. Neurochem. 48, 1817–1822.

    Article  PubMed  CAS  Google Scholar 

  • Sann E., Dildy-Mayfield J. E., and Harris R. A. (1994) Ethanol inhibits the function of 5-hydroxytryptamine type 1C and muscarinic M1 G pro-tein-linked receptors in xenopus oocytes expressing brain mRNA: role of protein kinase C.Mol. Pharmacol,45, 1004–1012.

    Google Scholar 

  • Sheng M., Thompson M. A., and Greenberg M. E. (1991) CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases.Science 252, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Simonsson P., Rodriguez F. D., Loman N., and Ailing C. (1991) G proteins coupled to phospholipase C: molecular targets of long-term ethanol exposure.J. Neurochem. 56, 2018–2026.

    Article  PubMed  CAS  Google Scholar 

  • Skwish S. and Shain W. (1990) Ethanol and diolein stimulated PKC translocation in astroglial cells.Life Sci. 47, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Smith T. L. (1994) Selective effects of ethanol exposure on metabotropic glutamate receptor and guanine neucleotide stimulated phospholipase C activity in primary cultures of astrocytes.Alcohol 11, 405–409.

    Article  PubMed  CAS  Google Scholar 

  • Smith T. L. (1987) Chronic ethanol consumption reduces [3H]inositol 1,4,5 trisphosphate specific binding in mouse cerebellar membrane fragments.Life Sci. 41, 2863–2868.

    Article  PubMed  CAS  Google Scholar 

  • Snell L. D., Tabakoff B., and Hoffman P. L. (1994) Involvement of protein kinase C in ethanol induced inhibition of NMDA receptor function in cerebellar granule cells.Alcohol. Clin. Exp. Res. 18, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y. and Sun A. Y. (1985) Ethanol and membrane lipids.Alcohol. Gin. Exp. Res. 9, 164–180.

    CAS  Google Scholar 

  • Tabakoff B. and Rothstein J. D. (1983) Biology of tolerance and dependence inMedical and Social Aspects of Alcohol Abuse. (Tabokoff B., Sutker P. B., and Randall C. L., (eds.) Plenum, New York, pp. 197–221.

    Google Scholar 

  • Tabakoff B. (1995) Ethanol’s action on the GABAAA receptor: is there a requirement for parsimony?Alcohol Clin. Exp. Res. 19, 1597–1598.

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B., Cornell N., and Hoffman, P. L. (1986) Alcohol tolerance.Ann. Emerg. Med. 15, 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B. and Hoffman P. L. (1996) Alcohol addiction: an enigma among us.Neuron. 16, 909–912.

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B., Hoffman P. L., Lee J. M., Saito T., Willard B., and De Leon-Jones F. (1988) Differences in platelet enzyme activity between alcoholics and nonalcoholics.N. Engl. J. Med. 318, 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B., Whelan J. P., Ovchinnikova L., Nhamburo P., Yoshimura M., and Hoffman P. L. (1995) Quantitative changes in G proteins do not mediate ethanol-induced downregulation of adenylyl cyclase in mouse cerebral cortex.Alcohol. Clin. Exp. Res. 19, 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Valverius P., Hoffman P. L. and Tabakoff B. (1989a ) Hippocampal and cerebellar Β-adrenergic receptors and adenylate cyclase are differentially altered by chronic ethanol ingestion.J. Neurochem. 52, 492–497.

    Article  PubMed  CAS  Google Scholar 

  • Valverius D., Hoffman P. L. and Tabakoff B. (1989b) Brain forskolin binding in mice dependent on and tolerant to ethanol.Brain Res. 503, 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Waltman C., Levine M. A., McCaul M. E., Svikis D. S., and Wand G. S. (1993) Enhanced expression of the inhibitory protein G12α and decreased activity of adenylyl cyclase in lymphocytes of abstinent alcoholics.Alcohol. Clin. Exp. Res. 17, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Wand G. S. and Levine M. (1991) Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein Gsα and adenylate cyclase activity in LS mice.Alcohol Clin. Exp. Res. 15, 705–710.

    Article  PubMed  CAS  Google Scholar 

  • Wand G. S., Diehl A. Ml., Levine M. A., Wolfgang D., and Samy S. (1991) Chronic ethanol treatment increases expression of inhibitory G proteins and adenylate cyclase activity in the CNS of two lines of ethanol-sensitive mice.J. Biol. Chem. 268, 2595–2601.

    Google Scholar 

  • Wand G. S., Waltman C., Martin C. S., McCaul M. E., Levine M. A., and Wolfgang D. (1994) Differential expression of guanosine triphosphate binding proteins in men at high and low risk for the future development of alcholism.J. Clin. Invest. 94, 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  • Whiting P., McKernan R. M., and Iverson L. L. (1990) Another mechanism for creating diversity in α-aminobutyrate A receptors: RNA splicing directs expression of two forms of the γ2 subunit, one of which contains a protein kinase C phosphorylation site.Proc. Natl. Acad. Sci. USA 87, 9966–9970.

    Article  PubMed  CAS  Google Scholar 

  • Williams R. J. and Kelly E. (1993) Chronic ethanol reduces immunologically detectable Gqα/11α in NG 108–15 cells.J. Neurochem. 61, 1163–1166.

    Article  PubMed  CAS  Google Scholar 

  • Yang X., Diehl A. M., and Wand G. S. (1996) Ethanol exposure alters the phosphorylation of cyclic AMP responsive element binding activity in rat cerebellum.J. Pharmacol. Exp. Therap. 278, 338–346.

    CAS  Google Scholar 

  • Yang X., Horn K., and Wand G. S. (1997) Chronic ethanol exposure impairs phosphorylation of CREB in rat striatum.Alcohol. Clin. Exp. Res. 21 (3), 40A.

    Google Scholar 

  • Yoshimura M. and Tabakoff B. (1995) Selective effects of ethanol on the generation of cAMP by particular members of the adenylyl cyclase family.Alcohol. Clin. Exp. Res. 19, 1435–1440.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J.-P., Xia J.-M., and Sun G. Y. (1997) Chronic ethanol inhibits inositol metabolism in specific brain regions.Alcohol. Clin. Exp. Res. 21, 716–720.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S.C. Neuronal signaling systems and ethanol dependence. Mol Neurobiol 17, 1–15 (1998). https://doi.org/10.1007/BF02802021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02802021

Index Entries

Navigation