Skip to main content
Log in

Induction of phase I, II and III drug metabolism/transport by xenobiotics

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA),tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular “stress” response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other “cellular stresses” including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the “stress” expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against “environmental” insults such as those elicited by exposure to xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, J., Killeen, E., Gong, P., Naquin, R., Hu, B., Stewart, D., Ingelfinger, J. R., and Nath, K. A., Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2.Am. J. Physiol. Renal. Physiol., 284, F743–752 (2003).

    PubMed  CAS  Google Scholar 

  • Anakk, S., Kalsotra, A., Kikuta, Y., Huang, W., Zhang, J., Staudinger, J. L., Moore, D. D., and Strobel, H. W., CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.Pharmacogenomics J., 4, 91–101 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y., Kemper, J. K., and Kemper, B., Repression of CAR-mediated transactivation of CYP2B genes by the orphan nuclear receptor, short heterodimer partner (SHP).DNA Cell Biol., 23, 81–91 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Baes, M., Gulick, T., Choi, H. S., Martinoli, M. G., Simha, D., and Moore, D. D., A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements.Mol. Cell Biol., 14, 1544–1552 (1994).

    PubMed  CAS  Google Scholar 

  • Banoglu, E., Current status of the cytosolic suIfotransferases in the metabolic activation of promutagens and procarcinogens.Curr. Drug Metab., 1, 1–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Beigneux, A. P., Moser, A. H., Shigenaga, J. K., Grunfeld, C., and Feingold, K. R., Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during the acute phase response.Biochem. Biophys. Res. Commun., 293, 145–149 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bock, K. W., Gschaidmeier, H., Heel, H., Lehmkoster, T., Munzel, P. A., Raschko, F., and Bock-Hennig, B., AH receptor-controlled transcriptional regulation and function of rat and human UDP-glucuronosyltransferase isoforms.Adv. Enzyme Regul., 38, 207–222 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bolton, J. L. and Chang, M., Quinoids as reactive intermediates in estrogen carcinogenesis.Adv. Exp. Med. Biol., 500, 497–507 (2001).

    PubMed  CAS  Google Scholar 

  • Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks, T. J., Role of quinones in toxicology.Chem. Res. Toxicol., 13, 135–160 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, U. and Eichelbaum, M., Polymorphisms in the ABC drug transporter gene MDR1.Pharmacogenomics J., 1, 59–64 (2001).

    PubMed  CAS  Google Scholar 

  • Chan, K. and Kan, Y. W., Nrf2 is essential for protection against acute pulmonary injury in mice.Proc. Natl. Acad. Sci. U.S.A., 96, 12731–12736 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Chan, L. M., Lowes, S., and Hirst, B. H., The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability.Eur. J. Pharm. Sci., 21, 25–51 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chandra, P. and Brouwer, K. L., The complexities of hepatic drug transport: current knowledge and emerging concepts.Pharm. Res., 21, 719–735 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Yu, R., Owuor, E. D., and Kong, A. N., Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death.Arch. Pharm. Res., 23, 605–612 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cherrington, N. J., Hartley, D. P., Li, N., Johnson, D. R., and Klaassen, C. D., Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats.J. Pharmacol. Exp. Ther., 300, 97–104 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Coles, B. R., Chen, G., Kadlubar, F. R., and Radominska-Pandya, A., Interindividual variation and organ-specific patterns of glutathione S-transferase alpha, mu, and pi expression in gastrointestinal tract mucosa of normal individuals.Arch. Biochem. Biophys., 403, 270–276 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Coumoul, X., Diry, M., and Barouki, R., PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.Biochem. Pharmacol., 64, 1513–1519 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cullinan, S. B. and Diehl, J. A., PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress.J. Biol. Chem., 279, 20108–20117 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J., and Diehl, J. A., Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.Mol. Cell Biol., 23, 7198–7209 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Dean, M., Hamon, Y., and Chimini, G., The human ATP-binding cassette (ABC) transporter superfamily.J. Lipid Res., 42, 1007–1017 (2001).

    PubMed  CAS  Google Scholar 

  • del Castillo-Olivares, A. and Gil, G., Role of FXR and FTF in bile acid-mediated suppression of cholesterol 7alpha-hydroxylase transcription.Nucleic Acids Res., 28, 3587–3593 (2000).

    Article  PubMed  Google Scholar 

  • Denson, L. A., Sturm, E., Echevarria, W., Zimmerman, T. L., Makishima, M., Mangelsdorf, D. J., and Karpen, S. J., The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp.Gastroenterology., 121, 140–147 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova, A. T., Protection against cancer by plant phenylpropenoids: induction of mammalian anticarcinogenic enzymes.Mini Rev. Med. Chem., 2, 595–610 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova, A. T., Holtzclaw, W. D., Cole, R. N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P., Direct evidence that sulfhydryl groups of Keapl are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.Proc. Natl. Acad. Sci. U.S.A., 99, 11908–11913 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J., and Talalay, P., Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups.Proc. Natl. Acad. Sci. U.S.A., 98, 3404–3409 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dussault, I. and Forman, B. M., The nuclear receptor PXR: a master regulator of “homeland” defense.Crit. Rev. Eukaryot. Gene Expr., 12, 53–64 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Elferink, C. J., Aryl hydrocarbon receptor-mediated cell cycle control.Prog. Cell Cycle Res., 5, 261–267 (2003).

    PubMed  Google Scholar 

  • Fardel, O., Lecureur, V., Corlu, A., and Guillouzo, A., P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment.Biochem. Pharmacol., 51, 1427–1436 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S. S., LeCluyse, E. L., Negishi, M., and Goldstein, J. A., Regulation of human CYP2C9 by the constitutive androstane receptor: discovery of a new distal binding site.Mol. Pharmacol., 62, 737–746 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fraser, D. J., Zumsteg, A., and Meyer, U. A., Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene.J. Biol. Chem., 278, 39392–39401 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Gao, B., Wenzel, A., Grimm, C., Vavricka, S. R., Benke, D., Meier, P. J., and Reme, C. E., Localization of organic anion transport protein 2 in the apical region of rat retinal pigment epithelium.Invest. Ophthalmol. Vis. Sci., 43, 510–514 (2002).

    PubMed  Google Scholar 

  • Geick, A., Eichelbaum, M., and Burk, O., Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin.J. Biol. Chem., 276, 14581–14587 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gervois, P., Torra, I. P., Fruchart, J. C., and Staels, B., Regulation of lipid and lipoprotein metabolism by PPAR activators.Clin. Chem. Lab. Med., 38, 3–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gilde, A. J., van der Lee, K. A., Willemsen, P. H., Chinetti, G., van der Leij, F. R., van der Vusse, G. J., Staels, B., and van Bilsen, M., Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism.Circ. Res., 92, 518–524 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, F. J. and Fernandez-Salguero, P., The aryl hydrocarbon receptor: studies using the AHR-null mice.Drug Metab. Dispos., 26, 1194–1198 (1998).

    PubMed  CAS  Google Scholar 

  • Gonzalez, F. J. and Nebert, D. W., Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation.Trends Genet., 6, 182–186 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, B., Hodgson, E., D’Costa, D. J., Robertson, G. R., and Liddle, C., Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor.Mol. Pharmacol., 62, 359–365 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., Cytochromes p450, drugs, and diseases.Mol. Intervent., 3, 194–204 (2003).

    Article  CAS  Google Scholar 

  • Guenthner, T. M., Qato, M., Whalen, R., and Glomb, S., Similarities between catalase and cytosolic epoxide hydrolase.Drug Metab. Rev., 20, 733–748 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Guo, G. L., Choudhuri, S., and Klaassen, C. D., Induction profile of rat organic anion transporting polypeptide 2 (oatp2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways.J. Pharmacol. Exp. Ther., 300, 206–212 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Guo, G. L., Staudinger, J., Ogura, K., and Klaassen, C. D., Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16alpha-carbonitrile is via interaction with pregnane X receptor.Mol. Pharmacol., 61, 832–839 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M. E., Aryl hydrocarbon receptors: diversity and evolution.Chem. Biol. Interact., 141, 131–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Heid, S. E., Pollenz, R. S., and Swanson, H. I., Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor.Mol. Pharmacol., 57, 82–92 (2000).

    PubMed  CAS  Google Scholar 

  • Hinson, J. A. and Forkert, P. G., Phase II enzymes and bioactivation.Can. J. Physiol. Pharmacol., 73, 1407–1413 (1995).

    PubMed  CAS  Google Scholar 

  • Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y., Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats.Mol. Pharmacol., 53, 1068–1075 (1998).

    PubMed  CAS  Google Scholar 

  • Honkakoski, P., Moore, R., Washburn, K. A., and Negishi, M., Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene.Mol. Pharmacol., 53, 597–601 (1998a).

    PubMed  CAS  Google Scholar 

  • Honkakoski, P. and Negishi, M., Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene.J. Biol. Chem., 272, 14943–14949 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Honkakoski, P., Sueyoshi, T., and Negishi, M., Drug-activated nuclear receptors CAR and PXR.Ann. Med., 35, 172–182 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Honkakoski, P., Zelko, I., Sueyoshi, T., and Negishi, M., The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene.Mol. Cell Biol., 18, 5652–5658 (1998b).

    PubMed  CAS  Google Scholar 

  • Hu, R., Hebbar, V., Kim, B. R., Chen, C., Winnik, B., Buckley, B., Soteropoulos, P., Tolias, P., Hart, R. P., and Kong, A. N., In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat.J. Pharmacol. Exp. Ther., (2004).

  • Huang, H. C., Nguyen, T., and Pickett, C. B., Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2.Proc. Natl. Acad. Sci. U.S.A., 97, 12475–12480 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. C., Nguyen, T., and Pickett, C. B., Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.J. Biol. Chem., 277, 42769–42774 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Powell-Coffman, J. A., and Jin, Y., The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans.Development, 131, 819–828 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, F., Grimsley, C., Das, S., Ramirez, J., Cheng, C., Kuttab-Boulos, H., Ratain, M. J., and Di Rienzo, A., Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups.Pharmacogenetics, 12, 725–733 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi, A., Hinoshita, E., Iwamoto, Y., Kohno, K., Kuwano, M., and Uchiumi, T., Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter.J. Biol. Chem., 276, 46822–46829 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Issemann, I. and Green, S., Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature, 347, 645–650 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., and Nabeshima, Y., An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun., 236, 313–322 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, A. K., Jun and Fos regulation of NAD(P)H: quinone oxidoreductase gene expression.Pharmacogenetics, 4, 1–10 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, D. R., Andersson, S., Slaughter, C. A., and Russell, D. W., Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis.J. Biol. Chem., 265, 8190–8197 (1990).

    PubMed  CAS  Google Scholar 

  • Jelinek, D. F. and Russell, D. W., Structure of the rat gene encoding cholesterol 7 alpha-hydroxylase.Biochemistry, 29, 7781–7785(1990).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. M., Charman, W. N., and Porter, C. J., Application of compartmental modeling to an examination ofin vitro intestinal permeability data: assessing the impact of tissue uptake, P-glycoprotein, and CYP3A.Drug Metab. Dispos., 31, 1151–1160 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jones, S. A., Moore, L. B., Shenk, J. L., Wisely, G. B., Hamilton, G. A., McKee, D. D., Tomkinson, N. C., LeCluyse, E. L., Lambert, M. H., Willson, T. M., Kliewer, S. A., and Moore, J. T., The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution.Mol. Endocrinol., 14, 27–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kang, K. W., Lee, S. J., Park, J. W., and Kim, S. G., Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress.Mol. Pharmacol., 62, 1001–1010 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kast, H. R., Goodwin, B., Tarr, P. T., Jones, S. A., Anisfeld, A. M., Stoltz, C. M., Tontonoz, P., Kliewer, S., Willson, T. M., and Edwards, P. A., Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor.J. Biol. Chem., 277, 2908–2915 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto, T., Sueyoshi, T., Zelko, I., Moore, R., Washburn, K., and Negishi, M., Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene.Mol. Cell Biol., 19, 6318–6322 (1999).

    PubMed  CAS  Google Scholar 

  • Kerb, R., Hoffmeyer, S., and Brinkmann, U., ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2.Pharmacogenomics, 2, 51–64 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Keum, Y. S., Owuor, E. D., Kim, B. R., Hu, R., and Kong, A. N., Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC).Pharm. Res., 20, 1351–1356 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Khan, S. A. and Vanden Heuvel, J. P., Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review).J. Nutr. Biochem., 14, 554–567 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, Y., Ohsawa, S., Mimura, J., Ema, M., Takasaki, C., Sogawa, K., and Fujii-Kuriyama, Y., Heterodimers of bHLH-PAS protein fragments derived from AhR, AhRR, and Arnt prepared by co-expression in Escherichia coli: characterization of their DNA binding activity and preparation of a DNA complex.J. Biochem. (Tokyo), 134, 83–90 (2003).

    CAS  Google Scholar 

  • Kim, R. B., Organic anion-transporting polypeptide (OATP) transporter family and drug disposition.Eur. J. Clin. Invest., 33Suppl 2, 1–5(2003).

    Article  PubMed  Google Scholar 

  • King, C. D., Rios, G. R., Green, M. D., and Tephly, T. R., UDP-glucuronosyltransferases.Curr. Drug Metab., 1, 143–161 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Moore, J. T., Wade, L., Staudinger, J. L., Watson, M. A., Jones, S. A., McKee, D. D., Oliver, B. B., Willson, T. M., Zetterstrom, R. H., Perlmann, T., and Lehmann, J. M., An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway.Cell, 92, 73–82 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kong, A. N. T., Owuor, E., Yu, R., Hebbar, V., Chen, C., Hu, R., and Mandlekar, S., Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE).Drug Metab. Rev., 33, 255–271 (2001a).

    Article  PubMed  CAS  Google Scholar 

  • Kong, A. N. T., Yu, R., Chen, C., Mandlekar, S., and Primiano, T., Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis.Arch. Pharm. Res., 23, 1–16 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kong, A. N. T., Yu, R., Hebbar, V., Chen, C., Owuor, E., Hu, R., Ee, R., and Mandlekar, S., Signal transduction events elicited by cancer prevention compounds.Mutat. Res., 480-481, 231–241 (2001b).

    PubMed  CAS  Google Scholar 

  • Konig, J., Nies, A. T., Cui, Y., Leier, I., and Keppler, D., Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance.Biochim. Biophys. Acta, 1461, 377–394 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Konig, J., Rost, D., Cui, Y., and Keppler, D., Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane.Hepatology, 29, 1156–1163 (1999b).

    Article  PubMed  CAS  Google Scholar 

  • Kullak-Ublick, G. A. and Becker, M. B., Regulation of drug and bile salt transporters in liver and intestine.Drug Metab. Rev., 35, 305–317 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kullak-Ublick, G. A., Stieger, B., and Meier, P. J., Enterohepatic bile salt transporters in normal physiology and liver disease.Gastroenterology, 126, 322–342 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R.and Thompson, E. B., The structure of the nuclear hormone receptors.Steroids, 64, 310–319 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Itoh, K., Yamamoto, M., and Kensler, T. W., Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter.Mol. Cell Biol., 22, 2883–2892 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kwak, M. K., Itoh, K., Yamamoto, M., Sutter, T. R., and Kensler, T. W., Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymesin vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione.Mol. Med., 7, 135–145 (2001).

    PubMed  CAS  Google Scholar 

  • Lambe, K. G. and Tugwood, J. D., A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs.Eur. J. Biochem., 239, 1–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. M., Hanson, J. M., Chu, W. A., and Johnson, J. A., Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells.J. Biol. Chem., 276, 20011–20016 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J. M., Kliewer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B., Su, J. L, Sundseth, S. S., Winegar, D. A., Blanchard, D. E., Spencer, T. A., and Willson, T. M., Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway.J. Biol. Chem., 272, 3137–3140(1997).

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J. M., McKee, D. D., Watson, M. A., Willson, T. M., Moore, J. T., and Kliewer, S. A., The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.J. Clin. Invest., 102, 1016–1023 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Levine, S. L. and Perdew, G. H., Aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) activity is unaltered by phosphorylation of a periodicity/ARNT/single-minded (PAS)-region serine residue.Mol. Pharmacol., 59, 557–566 (2001).

    PubMed  CAS  Google Scholar 

  • Lewis, D. E., P450 structures and oxidative metabolism of xenobiotics.Pharmacogenomics, 4, 387–395 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Harper, P. A., Tang, B. K., and Okey, A. B., Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene.Biochem. Pharmacol., 56, 599–612 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, P. I., Owens, I. S., Burchell, B., Bock, K. W., Bairoch, A., Belanger, A., Fournel-Gigleux, S., Green, M., Hum, D. W., lyanagi, T, Lancet, D., Louisot, P., Magdalou, J., Chowdhury, J. R., Ritter, J. K., Schachter, H., Tephly, T. R., Tipton, K. E., and Nebert, D. W., The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence.Pharmacogenetics, 7, 255–269 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Maglich, J. M., Stoltz, C. M., Goodwin, B., Hawkins-Brown, D., Moore, J. T., and Kliewer, S. A., Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification.Mol. Pharmacol., 62,638–646 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Maheo, K., Antras-Ferry, J., Morel, E, Langouet, S., and Guillouzo, A., Modulation of glutathione S-transferase subunits A2, M1, and P1 expression by interleukin-1beta in rat hepatocytes in primary culture.J. Biol. Chem., 272, 16125–16132 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Makishima, M., Okamoto, A. Y, Repa, J. J., Tu, H., Learned, R. M., Luk, A., Hull, M. V., Lustig, K. D., Mangelsdorf, D. J., and Shan, B., Identification of a nuclear receptor for bile acids.Science, 284, 1362–1365 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A., Zhou, J. Y., Ong, E. S., Oro, A. E., Kakizuka, A., and Evans, R. M., Characterization of three RXR genes that mediate the action of 9-cis retinoic acid.Genes Dev., 6, 329–344 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J. and Evans, R. M., The RXR heterodimers and orphan receptors.Cell, 83,841–850 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Menke, J. G., Macnaul, K. L., Hayes, N. S., Baffic, J., Chao, Y. S., Elbrecht, A., Kelly, L. J., Lam, M. H., Schmidt, A., Sahoo, S., Wang, J., Wright, S. D., Xin, P., Zhou, G, Moller, D. E., and Sparrow, C. P., A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7alpha-hydroxylase (CYP7a).Endocrinology, 143,2548–2558(2002).

    Article  PubMed  CAS  Google Scholar 

  • Meyer, U. A., Overview of enzymes of drug metabolism.J. Pharmacokinet. Biopharm., 24,449–459 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, N., Niwa, T., Yotsumoto, Y., and Sugiyama, Y., Impact of drug transporter studies on drug discovery and development.Pharmacol. Rev., 55,425–461 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Moore, L. B., Parks, D. J., Jones, S. A., Bledsoe, R. K., Consler, T. G., Stimmel, J. B., Goodwin, B., Liddle, C, Blanchard, S. G, Willson, T. M., Collins, J. L., and Kliewer, S. A., Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands.J. Biol. Chem., 275,15122–15127 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Moscow, J. A. and Dixon, K. H., Glutathione-related enzymes, glutathione and multidrug resistance.Cytotechnology, 12, 155–170(1993).

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, M., Iwanari, M., and Yokoi, T., Effects of histone deacetylation and DNA methylation on the constitutive and TCDD-inducible expressions of the human CYP1 family in MCF-7 and HeLa cells.Toxicol. Lett., 144, 247–256 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D. W., Nelson, D. R., Coon, M. J., Estabrook, R. W., Feyereisen, R., Fujii-Kuriyama, Y., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. R.,et al., The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature.DNA Cell Biol., 10,1–14(1991).

    PubMed  CAS  Google Scholar 

  • Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., and Nebert, D. W., P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature.Pharmacogenetics, 6,1–42 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T., Sherratt, P. J., Huang, H. C, Yang, C. S., and Pickett, C. B., Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome.J. Biol. Chem., 278,4536–4541 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Owuor, E. D. and Kong, A. N., Antioxidants and oxidants regulated signal transduction pathways.Biochem. Pharmacol., 64, 765–770 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Paquet, Y., Trottier, E., Beaudet, M. J., and Anderson, A., Mutational analysis of the CYP2B2 phenobarbital response unit and inhibitory effect of the constitutive androstane receptor on phenobarbital responsiveness.J. Biol. Chem., 275, 38427–38436 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pascussi, J. M., Dvorak, Z., Gerbal-Chaloin, S., Assenat, E., Maurel, P., and Vilarem, M. J., Pathophysiological factors affecting CAR gene expression.Drug Metab. Rev., 35, 255–268 (2003a).

    Article  PubMed  CAS  Google Scholar 

  • Pascussi, J. M., Gerbal-Chaloin, S., Drocourt, L., Maurel, P., and Vilarem, M. J., The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors.Biochim. Biophys. Acta, 1619,243–253 (2003b).

    PubMed  CAS  Google Scholar 

  • Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., and Mangelsdorf, D. J., Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha.Cell, 93, 693–704 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Perloff, M. D., von Moltke, L. L, and Greenblatt, D. J., Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats.Xenobiotica, 34,133–150 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ramsden, R., Beck, N. B., Sommer, K. M., and Omiecinski, C. J., Phenobarbital responsiveness conferred by the 5’-flanking region of the rat CYP2B2 gene in transgenic mice.Gene, 228,169–179(1999).

    Article  PubMed  CAS  Google Scholar 

  • Reichel, C., Gao, B., Van Montfoort, J., Cattori, V., Rahner, C., Hagenbuch, B., Stieger, B., Kamisako, T., and Meier, P. J., Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver.Gastroenterology, 117, 688–695(1999).

    Article  PubMed  CAS  Google Scholar 

  • Ritter, J. K., Kessler, F. K., Thompson, M. T, Grove, A. D., Auyeung, D. J., and Fisher, R. A., Expression and inducibility of the human bilirubin UDP-glucuronosyltransferase UGT1A1 in liver and cultured primary hepatocytes: evidence for both genetic and environmental influences.Hepatology 30, 476–484(1999).

    Article  PubMed  CAS  Google Scholar 

  • Rowlands, J. C. and Gustafsson, J. A., Aryl hydrocarbon receptor-mediated signal transduction.Crit. Rev. Toxicol., 27, 109–134(1997).

    Article  PubMed  CAS  Google Scholar 

  • Rushmore, T. H., King, R. G, Paulson, K. E., and Pickett, C. B., Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds.Proc. Natl. Acad. Sci. U.S.A., 87, 3826–3830 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Rushmore, T. H. and Kong, A. N., Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes.Curr. Drug Metab., 3, 481–490 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Schilter, B., Turesky, R. J., Juillerat, M., Honegger, P., and Guigoz, Y., Phase I and phase II xenobiotic reactions and metabolism of the food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in aggregating liver cell cultures.Biochem. Pharmacol., 45,1087–1096 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Schoonjans, K., Staels, B., and Auwerx, J., Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression.J. Lipid Res., 37, 907–925 (1996).

    PubMed  CAS  Google Scholar 

  • Shen, G., Hebbar, V., Nair, S. S., Xu, C., Li, W., Lin, W., Keum, Y. S., Han, J., Gallo, M. A., and Kong, A. N., Regulation of Nrf2 transactivation domain activity: The differential effects of mitogen-activated protein kinase cascades and synergistic stimulation effect of Raf and CREB binding protein.J. Biol. Chem., 279,23052–23060 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y, and Ishikawa, T, Benzo[a] pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor.Proc. Natl. Acad. Sci. U.S.A., 97, 779–782 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Shitara, Y., Sugiyama, D., Kusuhara, H., Kato, Y., Abe, T., Meier, P. J., Itoh, T., and Sugiyama, Y., Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21 a5)-mediated transport.Pharm. Res., 19, 147–153 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Simpson, A. E., The cytochrome P450 4 (CYP4) family.Gen. Pharmacol., 28,351–359 (1997).

    PubMed  CAS  Google Scholar 

  • Song, X., Xie, M., Zhang, H., Li, Y, Sachdeva, K., and Yan, B., The pregnane X receptor binds to response elements in a genomic context-dependent manner, and PXR activator rifampicin selectively alters the binding among target genes.Drug Metab. Dispos., 32, 35–42 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Staudinger, J., Liu, Y, Madan, A., Habeebu, S., and Klaassen, C. D., Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor.Drug Metab. Dispos., 29,1467–1472 (2001a).

    PubMed  CAS  Google Scholar 

  • Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., Liu, Y, Klaassen, C. D., Brown, K. K., Reinhard, J., Willson, T. M., Koller, B.H., and Kliewer, S. A., The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity.Proc. Natl. Acad. Sci. U.S.A., 98, 3369–3374 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Staudinger, J. L., Madan, A., Carol, K. M., and Parkinson, A., Regulation of drug transporter gene expression by nuclear receptors.Drug Metab. Dispos., 31, 523–527 (2003).

    Article  PubMed  Google Scholar 

  • Stewart, D., Killeen, E., Naquin, R., Alam, S., and Alam, J., Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium.J. Biol. Chem., 278,2396–2402 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi, T., Kawamoto, T., Zelko, I., Honkakoski, P., and Negishi, M., The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene.J. Biol. Chem., 274, 6043–6046 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi, T. and Negishi, M., Phenobarbital response elements of cytochrome P450 genes and nuclear receptors.Annu. Rev. Pharmacol. Toxicol., 41,123–143 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sugatani, J., Kojima, H., Ueda, A., Kakizaki, S., Yoshinari, K., Gong, Q. H., Owens, I. S., Negishi, M., and Sueyoshi, T., The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR.Hepatology, 33, 1232–1238(2001).

    Article  PubMed  CAS  Google Scholar 

  • Teng, S., Jekerle, V., and Piquette-Miller, M., Induction of ABCC3 (MRP3) by pregnane X receptor activators.Drug Metab. Dispos., 31,1296–1299 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Tew, K. D. and Ronai, Z., GST function in drug and stress response.Drug Resist. Updat., 2,143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Tirana, R. G. and Kim, R. B., Pharmacogenomics of organic anion-transporting polypeptides (OATP).Adv. Drug Deliv. Rev., 54,1343–1352(2002).

    Article  Google Scholar 

  • Tugwood, J. D., Aldridge, T. C., Lambe, K. G., Macdonald, N., and Woodyatt, N. J., Peroxisome proliferator-activated receptors: structures and function.Ann. N. Y. Acad. Sci., 804, 252–265(1996).

    Article  PubMed  CAS  Google Scholar 

  • Tugwood, J. D., Issemann, I., Anderson, R. G, Bundell, K. R., McPheat, W. L, and Green, S., The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene.EMBO. J., 11, 433–439 (1992).

    PubMed  CAS  Google Scholar 

  • Tukey, R. H. and Strassburg, C. P., Human UDP-glucuronosyl-transferases: metabolism, expression, and disease.Annu. Rev. Pharmacol. Toxicol., 40, 581–616 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Turgeon, D., Carrier, J. S., Levesque, E., Hum, D. W., and Belanger, A., Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members.Endocrinology., 142, 778–787 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Tzeng, S. J. and Huang, J. D., Transcriptional regulation of the rat Mrp3 promoter in intestine cells.Biochem. Biophys. Res. Commun., 291,270–277 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Vatsis, K. P., Weber, W. W., Bell, D. A., Dupret, J. M., Evans, D. A., Grant, D. M., Hein, D. W., Lin, H. J., Meyer, U. A., Relling, M. V.et al., Nomenclature for N-acetyltransferases.Pharmacogenetics., 5,1–17 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran, A., Laffitte, B. A., Joseph, S. B., Mak, P. A., Wilpitz, D. C, Edwards, P. A., and Tontonoz, P., Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha.Proc. Natl. Acad. Sci. U.S.A., 97, 12097–12102 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, N., Dinkova-Kostova, A. T, Holtzclaw, W. D., Kang, M. I., Kobayashi, A., Yamamoto, M., Kensler, T. W., and Talalay, P., Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keapl sensor modified by inducers.Proc. Natl. Acad. Sci. U.S.A., 101, 2040–2045 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Chen, J., Hollister, K., Sowers, L. C., and Forman, B. M., Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.Mol. Cell, 3, 543–553 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Faucette, S., Sueyoshi, T, Moore, R., Ferguson, S., Negishi, M., and LeCluyse, E. L, A novel distal enhancer module regulated by pregnane X receptor/constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression.J. Biol. Chem., 278,14146–14152 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. and LeCluyse, E. L., Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes.Clin. Pharmacokinet., 42,1331–1357 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D. J., P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR.Arch. Biochem. Biophys., 369,11–23 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wei, P., Zhang, J., Dowhan, D. H., Han, Y, and Moore, D. D., Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response.Pharmacogenomics J., 2,117–126 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M., Otterness, D. M., Aksoy, I. A., Wood, T C, Her, C, and Raftogianis, R. B., Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes.FASEB J., 11,3–14(1997).

    PubMed  CAS  Google Scholar 

  • Willson, T. M. and Kliewer, S. A., PXR, CAR and drug metabolism.Nat. Rev. Drug Discov., 1,259–266 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wolters, H., Elzinga, B. M., Bailer, J. F, Boverhof, R., Schwarz, M., Stieger, B., Verkade, H. J., and Kuipers, R, Effects of bile salt flux variations on the expression of hepatic bile salt transportersin vivo in mice.J. Hepatol., 37, 556–563 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Xie, W., Barwick, J. L, Downes, M., Blumberg, B., Simon, C. M., Nelson, M. C, Neuschwander-Tetri, B. A., Brunt, E. M., Guzelian, P. S., and Evans, R. M., Humanized xenobiotic response in mice expressing nuclear receptor SXR.Nature, 406, 435–439 (2000a).

    Article  PubMed  CAS  Google Scholar 

  • Xie, W., Barwick, J. L, Simon, C. M., Pierce, A. M., Safe, S., Blumberg, B., Guzelian, P. S., and Evans, R. M., Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR.Genes Dev., 14,3014–3023 (2000b).

    Article  PubMed  CAS  Google Scholar 

  • Xie, W., Radominska-Pandya, A., Shi, Y., Simon, C. M., Nelson, M. C, Ong, E. S., Waxman, D. J., and Evans, R. M., An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids.Proc. Natl. Acad. Sci. U.S.A., 98, 3375–3380(2001).

    Article  PubMed  CAS  Google Scholar 

  • Xiong, H., Yoshinari, K., Brouwer, K. L, and Negishi, M., Role of constitutive androstane receptor in thein vivo induction of Mrp3 and CYP2B1/2 by phenobarbital.Drug Metab. Dispos., 30,918–923(2002).

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Chen, C, Mo, Y. Y, Hebbar, V., Owuor, E. D., Tan, T. H., and Kong, A. N. T., Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expressionvia a Nrf2-dependent mechanism.J. Biol. Chem., 275, 39907–39913 (2000a).

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Lei, W., Mandlekar, S., Weber, M. J., Der, C. J., Wu, J., and Kong, A. N. T., Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals.J. Biol. Chem., 274, 27545–27552 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Mandlekar, S., Lei, W., Fahl, W. E., Tan, T. H., and Kong, A. N. T, p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens.J. Biol. Chem., 275, 2322–2327 (2000b).

    Article  PubMed  CAS  Google Scholar 

  • Yu, S., Rao, S., and Reddy, J. K., Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis.Curr. Mol. Med., 3, 561–572 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom, R. H., Solomin, L., Mitsiadis, T., Olson, L., and Perlmann, T., Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurrl, and Nor1.Mol. Endocrinol., 10, 1656–1666 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y. C, Davey, H. W., McLachlan, M. J., Xie, T, and Waxman, D. J., Elevated basal expression of liver peroxisomal beta-oxidation enzymes and CYP4A microsomal fatty acid omega-hydroxylase in STAT5b(-/-) mice: cross-talkin vivo between peroxisome proliferator-activated receptor and signal transducer and activator of transcription signaling pathways.Toxicol. Appl. Pharmacol., 182, 1–10 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Li, C.YT. & Kong, AN.T. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28, 249–268 (2005). https://doi.org/10.1007/BF02977789

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977789

Key words

Navigation