Skip to main content

Cytochrome P450: Structure, function, and generation of reactive oxygen species

  • Chapter
  • First Online:
Book cover Reviews of Physiology Biochemistry and Pharmacology, Volume 127

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 127))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney IR, Owicki IC (1985) Theories of protein-lipid and protein-protein interactions in membranes. In: Watts A, De Pont JJHHM (eds) Progress in protein-lipid interactions, vol I. Elsevier, Amsterdam, pp 1–60

    Google Scholar 

  • Adams JS, Ren SY, Arbelle JE, Clemens TL, Shany S (1994) A role for nitric oxide in the regulated expression of the 25-hydroxy-vitamin D-1-hydroxylation reaction in the chick myelomonocytic cell line HD-11. Endocrinology 134:499–502

    CAS  PubMed  Google Scholar 

  • Akhrem AA, Adrianov VT, Bokut SB, Luka ZA, Kissel MA, Skornyakova TG, Kisselev PA (1982) Thermotropic behaviour of phospholipid vesicles reconstituted with rat liver microsomal cytochrome P450. Biochim Biophys Acta 692: 287–295

    CAS  PubMed  Google Scholar 

  • Al-Bayati ZAF, Stohs SJ (1987) The role of iron in 2,3,7,8-tetrachlorodibenzo-p-dioxin-in-duced lipid peroxidation by rat liver microsomes. Toxicol Lett 38: 115–121

    Article  CAS  PubMed  Google Scholar 

  • Albano E, Tomasi A, Persson JO, Terelius Y, Goria-Gatti L, Ingelman-Sundberg M, Dianzani MU (1991) Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem Pharmacol 41: 1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Appel KE, Gorsdorf S, Scheper T, Spiegelhalder B, Wiessler M, Schoepke M, Engelhom C, Kramer R (1991) Metabolic denitrosation of N-nitrosamines: mechanism and biological consequences. IARC Sci Publ 105: 351–357

    CAS  PubMed  Google Scholar 

  • Archakov AI (1982) Stability, conformational rigidity and life-time of microsomal redox enzymes in soluble and membrane-bound state. In: Hietanen E, Laitinen M, Hänninen O (eds) Cytochrome P450. Biochemistry, biophysics and environmental implications. Elsevier/North Holland, Amsterdam, pp 487–495

    Google Scholar 

  • Atkins WM, Sligar SG (1987) Metablic switching in cytochrome P450cam: deuterium isotope effects on regiospecificity and the monooxygenase/oxidase reaction. J Am Chem Soc 109: 3754–3760

    Article  CAS  Google Scholar 

  • Atkins WM, Sligar SG (1988) Deuterium isotope effects in norcamphor metabolism by cytochrome P450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate. Biochemistry 27: 1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Atkins WM, Sligar SG (1989) Molecular recognition in cytochrome P450: alteration of regioselective alkane hydroxylation via protein engineering. J Am Chem Soc 111: 2715–2717

    Article  CAS  Google Scholar 

  • Atkins WM, Sligar SG (1990) Tyrosine-96 as a natural spectroscopic probe of the cytochrome P450cam active site. Biochemistry 29: 1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J (1954) An enzyme for the deamination of sympathomimetic amines: properties and distribution. J Pharmacol Exp Ther 110: 2

    CAS  Google Scholar 

  • Axelrod J (1955) The enzymatic demethylation of ephedrine. J Pharmacol Exp Ther 114: 430–438

    CAS  PubMed  Google Scholar 

  • Axelrod J (1982) The discovery of the microsomal drug-metabolizing enzymes. Trends Pharmacol Sci 3: 383–386

    CAS  Google Scholar 

  • Backes WL (1993) NADPH-cytochrome P450 reductase: function. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 15–34

    Google Scholar 

  • Backes WL, Eyer CS (1989) Cytochrome P450 LM2 reduction: substrate effects on the rate of reductase-LM2 association. J Biol Chem 264: 6252–6259

    CAS  PubMed  Google Scholar 

  • Backes WL, Reker-Backes CE (1988) The effect of NADPH concentration on the reduction of cytochrome P450 LM2. J Biol Chem 263: 247–253

    CAS  PubMed  Google Scholar 

  • Backes WL, Sligar SG, Schenkman JB (1980) Cytochrome P450 reduction exhibits burst kinetics. Biochem Biophys Res Commun 97: 860–867

    CAS  PubMed  Google Scholar 

  • Backes WL, Sligar SG, Schenkman JB (1982) Kinetics of hepatic cytochrome P450 reduction: correlation with spin state of the ferric heme. Biochemistry 21: 1324–1330

    Article  CAS  PubMed  Google Scholar 

  • Backes WL, Tamburini PP, Jansson I, Gibson GG, Sligar SG, Schenkman JB (1985) Kinetics of cytochrome P450 reduction: evidence for faster reduction of the high-spin ferric state. Biochemistry 24: 5130–5136

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JE, Morris GM, Richards WG (1991) Electron transport in cytochromes P450 by covalent switching. Proc R Soc Lond [Biol] 245: 43–51

    CAS  Google Scholar 

  • Beckert V, Dettmer R, Bernhardt R (1994a) Mutations of tyrosine 82 in bovine adrenodoxin that affect binding to cytochrome P45011A1 and P45011B1 but not electron transfer. J Biol Chem 269: 2568–2573

    CAS  PubMed  Google Scholar 

  • Beckert V, Dettmer R, Bernhardt R (1994b) Structural requirements for ferredoxin associated electron transfer evaluated by analysis of Tyr-82 and His-56 bovine adrenodoxin mutants. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 869–872

    Google Scholar 

  • Beckert V, Schrauber H, Bernhardt R, Van Dijk AA, Kakoschke C, Wray V (1995) Mutational effects on the spectroscopic properties and biological activities of oxidized bovine adrenodoxin, and their structural implications. Eur J Biochem 231: 226–235

    Article  CAS  PubMed  Google Scholar 

  • Beratan DN, Onuchic JN, Betts JN, Bowler BE, Gray HB (1990) Electron-tunneling pathways in rutheneted proteins. J Am Chem Soc 112: 7915–7921

    Article  CAS  Google Scholar 

  • Beratan DN, Betts BE, Onuchic JN (1991) Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 252: 1285–1288

    CAS  PubMed  Google Scholar 

  • Beratan DN, Betts BE, Onuchic JN (1992a) Tunneling pathway and redox state-dependent electronic couplings at nearly fixed distance in electron transfer proteins. J Phys Chem 7: 2852–2855

    Google Scholar 

  • Beratan DN, Onuchic JN, Winkler JR, Gray HB (1992b) Electron-tunneling pathways in proteins. Science 258: 1740–1741

    CAS  PubMed  Google Scholar 

  • Beresford AP (1993) CYP1A1: Friend or foe? Drug Metab Rev 25: 503–517

    CAS  PubMed  Google Scholar 

  • Bernhardt R (1993) Chemical probes of cytochrome P450 structure. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York, pp 547–560 (Handbook of experimental pharmacology, vol 105)

    Google Scholar 

  • Bernhardt R, Gunsalus IC (1985) Heterologous reconstitution of cytochrome P450 LM2 activity with bacterial electron transfer systems. In: Vereczky L, Magyar K (eds) Cytochrome P450, biochemistry, biophysics and induction. Akademia Kiado, Budapest, pp 159–162

    Google Scholar 

  • Bernhardt R, Gunsalus IC (1992) Reconstitution of cytochrome P4502B4 (LM2) activity with camphor and linalool monooxygenase electron donors. Biochem Biophys Res Commun 187: 310–317

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt R, UhlmannH (1995) Role of tyrosine 75 in cytochrome P450cam and analysis of possible electron transfer pathways. Eur J Biochem (submitted)

    Google Scholar 

  • Bernhardt R, Ngoc Dao NT, Stiel H, Schwarze W, Friedrich J, Jänig GR, Ruckpaul K (1983) Modification of cytochrome P450 with fluorescein isothiocyanate. Biochim Biophys Acta 745: 140–148

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Makower A, Jänig GR, Ruckpaul K (1984) Selective chemical modification of a functionally linked lysine in cytochrome P450 LM2. Biochim Biophys Acta 785: 186–190

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Pommerening K, Ruckpaul K (1987) Modification of carboxyl groups on NADPH-cytochrome P450 reductase involved in binding of cytochromes c and P450 LM2. Biochem Int 14: 823–832

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Kraft R, Otto A, Ruckpaul K (1988) Electrostatic interactions between cytochrome P450 LM2 and NADPH-cytochrome P450 reductase. Biomed Biochim Acta 47: 581–592

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Kraft R, Ruckpaul (1989a) A simple determination of the sideness of the NH2-terminus in the membrane-bound cytochrome P450 LM2. Biochem Int 17: 1143–1150

    Google Scholar 

  • Bernhardt R, Stiel H, Ruckpaul K (1989b) Distance between lysine 384 and heme of cytochrome P450 LM2 (P450IIB4) studied by fluorescence energy transfer measurements. Biochem Biophys Res Commun 163: 1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt R, Kraft R, Alterman M, Otto A, Schrauber H, Gunsalus IC, Ruckpaul K (1992) Common mechanism of interaction between cytochrome P450 and electron donors in different monooxygenase systems. In: Archakow AI, Bachmanova GI (eds) Cytochrome P450. Biochemistry and biophysics. Proceedings of the 7th international meeting, Cytochrome P450: structure and function, biotechnological and ecological aspects. Moscow, 28 July-2 Aug 1991, INCO-TNC. Joint Stock Company, Moscow, Russia, pp 204–209

    Google Scholar 

  • Bernhardt R, Beckert V, Uhlmann H, Sligar SG (1994a) Studies on electron transfer pathways in cytochrome P450 systems. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 387–394

    Google Scholar 

  • Bernhardt R, Kraft R, Uhlmann H, Beckert V (1994b) Investigation of protein-protein interactions in mitochondrial steroid hydroxylase systems using site-directed mutagenesis. J Protein Chem 13: 482–483

    Google Scholar 

  • Bhat KS, Padmanaban G (1978) Cytochrome P450 synthesis in vivo and in a cell-free system from rat liver. FEBS Lett 89: 337–340

    Article  CAS  PubMed  Google Scholar 

  • Bhat KS, Padmanaban G (1979) Studies on the biosynthesis of cytochrome P450 in rat liver — a probe with phenobarbital. Arch Biochem Biophys 198: 110–116

    Article  CAS  PubMed  Google Scholar 

  • Bird IM, Neil A, Hanley R, Word A, Mathis JM, McCarthy JL, Mason JI, Rainey WE (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldeosterone secretion. Endocrinology 133: 1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum LS (1993) Changes in cytochrome P450 in senescence. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 477–492

    Google Scholar 

  • Blanck J, Ruckpaul K (1993) Lipid-protein interactions. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 581–597

    Google Scholar 

  • Blanck J, Rein H, Sommer M, Ristau O, Smettan G, Ruckpaul K (1983) Correlations between spin equilibrium shift, reduction rate and N-demethylation activity in liver microsomal cytochrome P450 and a series of benzphetamine analogues as substrates. Biochem Pharmacol 32: 1683–1688

    CAS  PubMed  Google Scholar 

  • Blanck J, Smettan G, Ristau O, Ingelman-Sundberg M, Ruckpaul K (1984) Mechanism of rate control of the NADPH-dependent reduction of cytochrome P450 by lipids in reconstituted phospholipid vesicles. Eur J Biochem 144: 509–513

    Article  CAS  PubMed  Google Scholar 

  • Blanck J, Jänig G-R, Schwarz D, Ruckpaul K (1989) Role of lipid in the electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 from mammalian liver cells. Xenobiotica 19: 1231–1246

    CAS  PubMed  Google Scholar 

  • Boddupalli SS, Oster T, Estabrook RW, Peterson JA (1992) Reconstitution of the fatty acid hydroxylation function of cytochrome P450 BM-3 utilizing its individual recombinant hemo-and flavoprotein domains. J Biol Chem 267: 10375–10380

    CAS  PubMed  Google Scholar 

  • Bondy SC, Naderi S (1994) Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 48: 155–159

    Article  CAS  PubMed  Google Scholar 

  • Bonfils C, Debey P, Maurel P (1979) Highly purified microsomal cytochrome P450: the oxyferro intermediate stabilized at low temperature. Biochem Biophys Res Commun 88: 1301–1307

    CAS  PubMed  Google Scholar 

  • Bonfils C, Balny C, Maurel P (1981) Direct evidence for electron transfer from ferrous cytochrome to the oxy ferrous cytochrome P450 LM2. J Biol Chem 256: 9457–9465

    CAS  PubMed  Google Scholar 

  • Bösterling B, Stier A, Hildebrandt AG, Dawson JH, Trudell JR (1979) Reconstitution of cytochrome P450 and cytochrome P450 reductase into phosphatidylcholine-phosphatidylethanolamine bilayers: characterization of structure and metabolic activity. Mol Pharmacol 16: 332–342

    PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P450 reductase. Nature 351: 714–718

    Article  CAS  PubMed  Google Scholar 

  • Bresnick E (1993) Induction of cytochromes P450 1 and P450 2 by xenobiotics. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York, pp 503–524 (Handbook of experimental pharmacology, vol 105)

    Google Scholar 

  • Brinigar WS, Chang CK, Geibel J, Traylor TG (1974) Solvent effects on reversible formation and oxidative stability of heme-oxygen complexes. J Am Chem Soc 96: 5597–5599

    CAS  PubMed  Google Scholar 

  • Briza P, Breitenbach M, Ellinger A, Segall J (1990a) Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev 4: 1775–1789

    CAS  PubMed  Google Scholar 

  • Briza P, Ellinger A, Winkler G, Breitenbach M (1990b) Characterization of a dl-dityrosine-containing macromolecule from yeast ascospore walls. J Biol Chem 265: 15118–15123

    CAS  PubMed  Google Scholar 

  • Briza P, Eckerstorfer M, Breitenbach M (1994) The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble ll-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci USA 91: 4524–4528

    CAS  PubMed  Google Scholar 

  • Brodie BB (1956) Pathways of drug metabolism. J Pharm Pharmacol 8: 1–17

    CAS  PubMed  Google Scholar 

  • Brown RR, Miller JA, Miller EC (1954) The metabolism of methylated aminoazo dyes. IV. Dietary factors enhancing demethylation in vitro. J Biol Chem 209: 211–222

    CAS  PubMed  Google Scholar 

  • Bulun SE, Rosenthal IM, Brodie AM, Inkster SE, Zeller WP, DiGeorge AM, Frasier SD, Kilgore MW, Simpson ER (1994) Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex cord tumors, as well as in normal fetal and adult gonads [corrected and republished with original paging, article originally printed in J Clin Endocrinol Metab 1993 Dec, 77: 1616–1621]. J Clin Endocrinol Metab 78: 1616–1621

    CAS  PubMed  Google Scholar 

  • Caron MG, Goldstein S, Savard K, March JM (1975) Protein kinase stimulation of a reconstituted cholesterol side chain cleavage enzyme system in the bovine corpus luteum. J Biol Chem 250: 5137–5143

    CAS  PubMed  Google Scholar 

  • Chashchin VL, Turko IV, Akhrem AA, Usanov SA (1985) Cross-linking studies of adrenocortical cytochrome P450scc. Evidence for a covalent complex with adrenodoxin and localization of the adrenodoxin-binding domain. Biochim Biophys Acta 828: 313–324

    CAS  PubMed  Google Scholar 

  • Chen S, Zhou D (1992) Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments. J Biol Chem 267: 22587–22594

    CAS  PubMed  Google Scholar 

  • Chiang Y-L, Coon MJ (1979) Comparative study of two highly purified forms of liver microsomal cytochrome P450: circular dichroism and other properties. Arch Biochem Biophys 195: 178–187

    CAS  PubMed  Google Scholar 

  • Coghlan VM, Vickery LE (1991) Site-specific mutations in human ferredoxin that affect binding to ferridoxin reductase and cytochrome P450scc. J Biol Chem 266: 18606–18612

    CAS  PubMed  Google Scholar 

  • Coghlan VM, Vickery LE (1992) Electrostatic interactions stabilizing ferredoxin electron transfer complexes. Disruption by “conservative” mutations. J Biol Chem 267: 8932–8935

    CAS  PubMed  Google Scholar 

  • Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317–366

    CAS  PubMed  Google Scholar 

  • Conney AH, Miller EC, Miller JA (1956) The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res 16: 450–459

    CAS  PubMed  Google Scholar 

  • Conney AH, Davison C, Gastel R, Burns JJ (1960) Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther 130: 1–8

    CAS  PubMed  Google Scholar 

  • Cooper DY, Levine S, Narasimhulu S, Rosenthal O, Estabrook RW (1965) Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 147: 400–402

    CAS  PubMed  Google Scholar 

  • Cooper JR, Brodie BB (1954) Enzyme systems involved in the biotransformation of barbiturates. J Pharmacol Exp Ther 110: 12

    Google Scholar 

  • Cummings SW, Curtis BB, Peterson JA, Prough RA (1990) The effect of the tert-butylquinone metabolite of butylated hydroxyanisole on cytochrome P450 monooxygenase activity. Xenobiotica 20: 915–924

    CAS  PubMed  Google Scholar 

  • Cupp JR, Vickery LE (1989) Adrenodoxin with a COOH-terminal deletion (des 116–128) exhibits enhanced activity. J Biol Chem 264: 1602–1607

    CAS  PubMed  Google Scholar 

  • Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Struct Biol 2: 144–153

    CAS  Google Scholar 

  • Curnow KM, Tusie-Luna M-T, Pascoe L, Natarajan R, Gu J-L, Nadler JL, White PC (1991) The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 5: 1513–1522

    CAS  PubMed  Google Scholar 

  • Curnow KM, Slutsker L, Vitek J, Cole T, Speiser PW, New MI, White PC, Pascoe L (1993) Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc Natl Acad Sci USA 90: 4552–4556

    CAS  PubMed  Google Scholar 

  • Dai Y, Rashba-Step J, Cederbaum AI (1993) Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry 32: 6928–6937

    Article  CAS  PubMed  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822: 1–42

    CAS  PubMed  Google Scholar 

  • Davies MD, Sligar SG (1992) Genetic variants in the putidaredoxin-cytochrome P450cam eletron-transfer complex: identification of the residue responsible for redox-state-dependent conformers. Biochemistry 31: 11383–11389

    CAS  PubMed  Google Scholar 

  • Davies MD, Qin L, Beck JL, Suslick KS, Koga H, Horiuchi T, Sligar SG (1990) Putida-redoxin reduction of cytochrome P450cam: dependence of electron transfer on the identity of putidaredoxin's C-terminal amino acid. J Am Chem Soc 112: 7396–7398

    Article  CAS  Google Scholar 

  • Defaye G, Monnier N, Guidicelli C, Chambaz EM (1982) Phosphorylation of purified mitochondrial cytochromes P450 (cholesterol desmolase and 11β-hydroxylase) from bovine adrenal cortex. Mol Cell Endocrinol 27: 157–168

    Article  CAS  PubMed  Google Scholar 

  • DeLemos-Chiarandini C, Frey AB, Sabatini DD, Kreibich G (1987) Determination of membrane topology of the phenobarbital-inducible rat liver cytochrome P450 isoenzyme PB-4 using site-specific antibodies. J Cell Biol 104: 209–219

    CAS  Google Scholar 

  • Depierre JW, Ernster L (1977) Enzyme topology of intracellular membranes. Annu Rev Biochem 46: 201–262

    Article  CAS  PubMed  Google Scholar 

  • Dignam JD, Strobel HW (1977) NADPH-cytochrome P450 reductase from rat liver: purification by affinity chromatography and characterization. Biochemistry 16: 1116–1123

    Article  CAS  PubMed  Google Scholar 

  • DuBois RN, Waterman MR (1979) Effect of phenobarbital administration to rats on the level of the in vitro synthesis of cytochrome P450 directed by total rat liver RNA. Biochem Biophys Res Commun 90: 150–157

    Article  CAS  PubMed  Google Scholar 

  • Egawa T, Shimada H, Ishimura Y (1994) Evidence for compound-I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem Biophys Res Commun 201: 1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Ekström G, Cronholm T, Ingelman-Sundberg M (1986) Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats. Biochem J 233: 755–761

    PubMed  Google Scholar 

  • Ekström G, Ingelman-Sundberg M (1986) Mechanism of lipid peroxidation dependent upon cytochrome P450 LM2. Eur J Biochem 158: 195–201

    PubMed  Google Scholar 

  • Eliasson E, Johansson I, Ingelman-Sundberg M (1990) Substrate-, hormone-, and cAMP-regulated cytochrome P450 degradation. Proc Natl Acad Sci USA 87: 3225–3229

    CAS  PubMed  Google Scholar 

  • Erdmann B, Gerst H, Lenz D, Bähr V, Bernhardt R (1995) Zone-specific localization of cytochrome P45011B1 in the human adrenal cortex by PCR-derived riboprobes. Histochemistry (in press)

    Google Scholar 

  • Ernster L, Orrenius S (1965) Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc 24: 1190–1199

    CAS  PubMed  Google Scholar 

  • Estabrook RW, Cooper DY, Rosenthal O (1963) The light-reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem Z 338: 741–755

    CAS  PubMed  Google Scholar 

  • Estabrook RW, Hildebrandt AG, Baron J, Netter KJ, Leibman KC (1971) New spectral intermediate associated with cytochrome P450 function in liver microsomes. Biochem Biophys Res Commun 42: 132–139

    Article  CAS  PubMed  Google Scholar 

  • Estabrook RW, Kawano S, Weringloer J, Kuthan H, Tsuji H, Graf H, Ullrich V (1979) Oxycytochrome P450: its breakdown to superoxide for the formation of hydrogen peroxide. Acta Biol Med Germ 38: 423–434

    CAS  PubMed  Google Scholar 

  • Everest AM, Wallin SA, Stemp EDA, Nocek JM, Mauk AG, Hoffman BM (1991) Aromatic hole superexchange through position 82 of cytochrome c is not required for intracomplex electron transfer to zinc cytochrome c peroxidase. J. Am. Chem. Soc. 113: 4337–4338

    Article  CAS  Google Scholar 

  • Faletto MB, Linko P, Goldstein JA (1992) A single amino acid mutation (Ser180—Cys) determines the polymorphism in cytochrome P450 g (P4502C13) by altering protein stability. J Biol Chem 267:2032–2037

    CAS  PubMed  Google Scholar 

  • Farver O, Skov LK, Pascher T, Karlsson BG, Nordling M, Lundberg LG, Vänngard T, Pecht I (1993) Intramolecular electron transfer in single-site-mutated azurins. Biochemistry 32: 7317–7322

    Article  CAS  PubMed  Google Scholar 

  • Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360

    CAS  PubMed  Google Scholar 

  • Fisher MT, Sligar SG (1985) Control of heme protein redox potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium. J Am Chem Soc 107: 5018–5019

    Article  CAS  Google Scholar 

  • Fisher MT, Sligar SG (1987) Temperature jump relaxation kinetics of the P450cam spin equilibrium. Biochemistry 26: 4797–4803

    Article  CAS  PubMed  Google Scholar 

  • French JS, Guengerich FP, Coon MJ (1980) Interactions of cytochrome P450, NADPH-cytochrome P450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem 255: 4112–4119

    CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Fujii-Kuriyama Y, Mizukami Y, Kawajiri K, Sogawa K, Muramatsu M (1982) Primary structure of a cytochrome P450: coding sequence of phenobarbital-inducible cytochrome P450 cDNA from rat liver. Proc Natl Acad Sci USA 79: 2793–2797

    CAS  PubMed  Google Scholar 

  • Fukuda T, Imai Y, Komori M, Nakamura M, Kusunose E, Satouchi K, Kusunose M (1993) Replacement of Thr-303 of P450 2E1 with serine modifies the regioselectivity of its fatty acid hydroxylase activity. J Biochem 113: 7–12

    CAS  PubMed  Google Scholar 

  • Furuya H, Shimizu T, Hatano M, Fujii-Kuriyama Y (1989a) Mutations at the distal and proximal sites of cytochrome P450d changed regio-specificity of acetanilide hydroxylations. Biochem Biophys Res Commun 160: 669–676

    Article  CAS  PubMed  Google Scholar 

  • Furuya H, Shimizu T, Hirano K, Hatano M, Fujii-Kuriyama Y (1989b) Site-directed mutagenesis of rat liver cytochrome P450d: catalytic activities toward benzphetamine and 7-ethoxycoumarin. Biochemistry 28: 6848–6857

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel (1958) Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys 77: 493–509

    Article  CAS  PubMed  Google Scholar 

  • Geley S, Jöhrer K, Peter M, Denner K, Bernhardt R, Sippell WG, Kofler R (1995) Amino acid substitution R384P in aldosterone synthase causes CMO-I deficiency. J Clin Endocrinol Metab 80: 424–429

    Article  CAS  PubMed  Google Scholar 

  • Gerber NC, Sligar SG (1992) Catalytic mechanism of cytochrome P450: evidence for a distal charge relay. J Am Chem Soc 114: 8742–8743

    Article  CAS  Google Scholar 

  • Gerber NC, Sligar SG (1994) A role for Asp-251 in cytochrome P450cam oxygen activation. J Biol Chem 269: 4260–4266

    CAS  PubMed  Google Scholar 

  • Geren LM, O'Brien P, Stonehuerner J, Millett F (1984) Identification of specific carboxylate groups on adrenodoxin that are involved in the interaction with adrenodoxin reductase. J Biol Chem 259: 2155–2160

    CAS  PubMed  Google Scholar 

  • Gillette JR, Brodie BB, LaDu BN (1957) The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. J Pharmacol Exp Ther 119: 532–540

    CAS  PubMed  Google Scholar 

  • Gonzalez FJ (1990) Molecular genetics of the P450 superfamily. Pharmacol Ther 45: 1–38

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Gelboin HV (1994) Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 26: 165–183

    CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Kimura S, Son BJ, Pastewka J, Gelboin HV, Hardwick JP (1986) Sequence of two related P450 mRNAs transcriptionally increased during rat development. J Biol Chem 261: 10667–10672

    CAS  PubMed  Google Scholar 

  • Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P450. J Biol Chem 259: 6812–6817

    CAS  PubMed  Google Scholar 

  • Gotoh O, Fujii-Kuriyama Y (1989) Evolution, structure, and gene regulation of cytochrome P450. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 1. Akademie, Berlin, pp 195–243

    Google Scholar 

  • Gotoh O, Tagashira Y, Iizuka T, Fujii-Kuriyama Y (1983) Structural characterization of cytochrome P450. Possible location of the heme binding cysteine in determined aminoacid sequence. J Biochem (Tokyo) 93: 807–817

    CAS  PubMed  Google Scholar 

  • Groves JT, McClusky GA (1976) Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J Am Chem Soc 98: 859–861

    CAS  Google Scholar 

  • Guengerich FP (1978) Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase. Biochemistry 17: 3633–3639

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Gillam EMJ, Ohmori S, Sandhu P, Brain WR, Sari M-A, Iwasaki M (1993) Expression of human cytochrome P450 enzymes in yeast and bacteria and relevance to studies on catalytic specificity. Technology 82: 21–37

    CAS  Google Scholar 

  • Gunsalus IC, Wagner GC (1978) Bacterial P450cam methylene monooxygenase components: cytochrome m, putidaredoxin, and putidaredoxin reductase. Methods Enzymol 52: 166–188

    CAS  PubMed  Google Scholar 

  • Gustafsson JA, Ingelman-Sundberg M (1975) Regulation and substrate specificity of a steroid sulfate-specific hydroxylase system in female rat liver microsomes. J Biol Chem 250: 3451–3458

    CAS  PubMed  Google Scholar 

  • Gustafsson JA, Mode A, Norstedt G, Skett P (1983) Sex-steroid induced changes in hepatic enzymes. Annu Rev Physiol 45: 51–60

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine. Some problems and concepts. Arch Biochem Biophys 246: 501–514

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto I, Ichikawa Y (1984) Modification of a lysine residue of adrenodoxin reductase, essential for complex formation with adrenodoxin. Biochim Biophys Acta 786: 32–41

    CAS  PubMed  Google Scholar 

  • Haniu M, Armes LG, Yasunobu KT, Shastry BA, Gunsalus IC (1982) Amino acid sequence of the Pseudomonas putida cytochrome P450. J Biol Chem 257: 12664–12671

    CAS  PubMed  Google Scholar 

  • Hanukoglu I, Jefcoate CR (1980) Mitochondrial cytochrome P450scc. Mechanism of electron transport by adrenodoxin. J Biol Chem 255: 3057–3061

    CAS  PubMed  Google Scholar 

  • Hanukoglu I, Rapoport R, Weiner L, Sklan D (1993) Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system. Arch Biochem Biophys 305: 489–498

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Miyata T (1990) Structure-activity relationship of mitochondrial steroid hydroxylase covalent complexes. In: Ingelman-Sundberg M, Gustafsson J-A, Orrenius S (eds) Abstracts of the 8th international symposium on microsomes and drug oxidations, Stockholm, 25–29 July 1990, Karolinska Institute, p 129

    Google Scholar 

  • Hara T, Takeshima M (1994) Conclusive evidence of a quaternary cluster model for cholesterol side chain cleavage reaction catalyzed by cytochrome P450scc. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 417–420

    Google Scholar 

  • Harikrishna JA, Black SM, Szklarz GD, Miller WL (1993) Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol 12: 371–379

    CAS  PubMed  Google Scholar 

  • Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J (1994) Crystal structure and refinement of cytochrome P450terp at 2.3 Å resolution. J Mol Biol 236: 1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K (1994) Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787–2797

    CAS  PubMed  Google Scholar 

  • Hayaishi D, Nozaki M (1969) Nature and mechanisms of oxygenases. Science 164: 389–396

    CAS  PubMed  Google Scholar 

  • He S, Modi S, Bendall DS, Gray JC (1991) The surface-exposed-tyrosine residue Tyr83 of pea plastocyanin is involved in both binding and electron transfer reactions with cytochrome f. EMBO J 10:4011–4016

    CAS  PubMed  Google Scholar 

  • Hecker M, Ullrich H (1989) On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem 264: 141–150

    CAS  PubMed  Google Scholar 

  • Higashi Y, Hiromasa T, Tanae A, Miki T, Nakura J, Kondo T, Ohura T, Ogawa E, Nakayama K, Fujii-Kuriyama Y (1991) Effects of individual mutations in the P450(C21) pseudogene on the P450(C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency. J Biochem (Tokyo) 109: 638–644

    CAS  PubMed  Google Scholar 

  • Hildebrandt AG, Roots I (1975) Reduced nicotinamide adenine dinucleoitde phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed-function oxidation reactions in liver microsomes. Arch Biochem Biophys 171: 385–397

    Article  CAS  Google Scholar 

  • Hintz MJ, Peterson JA (1981) The kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin. J Biol Chem 256: 6721–6728

    CAS  PubMed  Google Scholar 

  • Hintz MJ, Mock DM, Peterson LL, Tuttle K, Peterson JA (1982) Equilibrium and kinetic studies on the interaction of cytochrome P-450cam and putidaredoxin. J Biol Chem 257: 14324–14332

    CAS  PubMed  Google Scholar 

  • Hiroya K, Ishigooka M, Shimizu T, Hatano M (1992) Role of Glu318 and Thr319 in the catalytic function of cytochrome P450d (P4501A2): effects of mutations on the methanol hydroxylation. FASEB J 6: 749–751

    CAS  PubMed  Google Scholar 

  • Hlavica P, Kellermann J, Golly I, Lehnerer M (1994) Chemical modification of Tyr34 and Tyr129 in rabbit liver microsomal cytochrome b5 affects interaction with cytochrome P450 2B4. Eur J Biochem 224: 1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Ho MM, Vinson GP (1993) 11β-Hydroxylase gene expression in the rat adrenal cortex. J Endocrinol 139: 301–306

    CAS  PubMed  Google Scholar 

  • Hornsby PJ (1986) Cytochrome P45/pseudosubstrate interactions and the role of antioxidants in the adrenal cortex. Endocr Res 12: 469–494

    CAS  PubMed  Google Scholar 

  • Hrycay EG, O'Brien PJ (1972) Cytochrome P450 as a microsomal peroxidase in steroid hydroperoxide reduction. Arch Biochem Biophys 153: 480–494

    CAS  PubMed  Google Scholar 

  • Hu Y, Mishin V, Johansson I, Von-Bahr C, Cross A, Ronis MJ, Badger TM, Ingelman-Sundberg M (1994) Chlormethiazole as an efficient inhibitor of cytochrome P45 2E1 expression in rat liver. J Pharmacol Exp Ther 269: 1286–1291

    CAS  PubMed  Google Scholar 

  • Igarashi Y, Kimura T (1986) Importance of the unsaturated fatty acyl group of phospholipids in their stimulatory role on rat adrenal mitochondrial steroidogenesis. Biochemistry 25: 6461–6466

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Shen WH, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8:654–662

    Article  CAS  PubMed  Google Scholar 

  • Imai M, Shimada H, Watanabe Y, Matsushima-Hibiga Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of cytochrome P450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine. A possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci USA 86: 7823–7827

    CAS  PubMed  Google Scholar 

  • Imai Y, Nakamura M (1988) The importance of threonine-301 from cytochromes P450 (laurate (ω-1)-hydroxylase and testosterone 16-hydroxylase) in substrate binding as demonstrated by site-directed mutagenesis. FEBS Lett 234: 313–315

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Nakamura M (1989) Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P450 (laurate (ω-1)-hydroxylase and testosterone 16-hydroxylase). Biochem Biophys Res Commun 158: 717–722

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Globerman H, Gertner JM, Kagawa N, Waterman MR (1993) Expression and purification of functional human 17 alpha-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17,20-lyase deficiency. J Biol Chem 268: 19681–19689

    CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Glaumann H (1977) Reconstitution of the liver microsomal hydroxylase system into liposomes. FEBS Lett 78: 72–76

    Article  CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Blanck J, Smettan G, Ruckpaul K (1983) Reduction of cytochrome P450 LM2 by NADPH in reconstituted phospholipid vesicles is dependent on membrane charge. Eur J Biochem 134: 157–162

    Article  CAS  PubMed  Google Scholar 

  • Inglis SC, Guillemette JG, Johnson JA, Smith M (1991) Analysis of the invariant Phe82 residue of yeast iso-1-cytochrome c by site-directed mutagenesis using a phagemid yeast shuttle vector. Protein Eng 4: 569–574

    CAS  PubMed  Google Scholar 

  • Ishigooka M, Shimizu T, Hiroya K, Hatano M (1992) Role of Glu318 at the putative distal site in the catalytic function of cytochrome P450d. Biochemistry 31: 1528–1531

    Article  CAS  PubMed  Google Scholar 

  • Ishimura Y, Ullrich V, Peterson JA (1971) Oxygenated cytochrome P450 and its possible role in enzymic hydroxylation. Biochem Biophys Res Commun 42: 140–146

    Article  CAS  PubMed  Google Scholar 

  • Iyanagi T, Mason HS (1973) Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemistry 12: 2297–2308

    Article  CAS  PubMed  Google Scholar 

  • Iyanagi T, Makino N, Mason HS (1974) Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase. Biochemistry 13: 1701–1710

    Article  CAS  PubMed  Google Scholar 

  • Iyanagi T, Anan FK, Imai Y, Mason HS (1978) Studies on the microsomal mixed function oxidase system: redox properties of detergent-solubilized NADPH-cytochrome P450 reductase. Biochemistry 17: 2224–2230

    Article  CAS  PubMed  Google Scholar 

  • Iyanagi T, Makino R, Anan FK (1981) Studies on the microsomal mixed-function oxidase system: mechanism of actionof hepatic NADPH-cytochrome P450 reductase. Biochemistry 20: 1722–1730

    Article  CAS  PubMed  Google Scholar 

  • Jänig GR, Kraft R, Blanck J, Ristau O, Rabe H, Ruckpaul K (1987) Chemical modification of cytochrome P450 LM4. Identification of functionally linked tyrosine residues. Biochim Biophys Acta 916: 512–523

    PubMed  Google Scholar 

  • Jansson I (1993) Posttranslational modification of cytochrome P450. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 561–580

    Google Scholar 

  • Jansson I, Tamburini PP, Favreau LV, Schenkman JB (1985) The interaction of cytochrome b5 with four cytochrome P450 enzymes from the untreated rat. Drug Metab Dispos 13: 453–458

    CAS  PubMed  Google Scholar 

  • Jick H, Shuster L (1966) The turnover of microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in the livers of mice treated with phenobarbital. J Biol Chem 241: 5366–5369

    CAS  PubMed  Google Scholar 

  • Jung C, Hui Bon Hoa G, Schröder K-L, Simon M, Doucet JP (1992) Substrate analogue induced changes of the CO-stretching mode in the cytochrome P450cam-carbon monoxide complex. Biochemistry 31: 12855–12862

    Article  CAS  PubMed  Google Scholar 

  • Junqueira VBC, Simizu K, Videla LA, Barros SB (1986) Dose-dependent study of the effects of acute lindane administration on rat liver superoxide anion production, antioxidant enzyme activities and lipid peroxidation. Toxicology 41: 193–204

    Article  CAS  PubMed  Google Scholar 

  • Kahl R (1991) Protective and adverse biological actions of phenolic antioxidants. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic, London, pp 245–273

    Google Scholar 

  • Kahl R, Weinke S, Kappus H (1989) Production of reactive oxygen species due to metabolic activation of butylated hydroxyanisole. Toxicology 59: 179–94

    Article  CAS  PubMed  Google Scholar 

  • Kappus H (1985) Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic, London, pp 273–310

    Google Scholar 

  • Kappus H (1986) Overview of enzymes involved in bioreduction of drugs and in redox cycling. Biochem Pharmacol 35: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Kappus H (1993) Metabolic reactions: role of cytochrome P450 in the formation of reactive oxygen species. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 145–154

    Google Scholar 

  • Karuzina I, Archakov AA (1985) Inactivation of cytochrome P450 in hydroxylase reactions. Biokhimiya 50: 1805–1810

    CAS  Google Scholar 

  • Karuzina I, Archakov AA (1994) The oxidative inactivation of cytochrome P450 in monooxy-genase reactions. Free Radic Biol Med 16: 73–97

    Article  CAS  PubMed  Google Scholar 

  • Katagiri M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P450 functional in methylene hydroxylation. J Biol Chem 243: 3543–3546

    CAS  PubMed  Google Scholar 

  • Kato R (1974) Sex-related differences in drug metabolism. Drug Metab Rev 3: 1–32

    CAS  PubMed  Google Scholar 

  • Kato R, Kamataki T (1982) Cytochrome P450 as a determinant of sex difference of drug metabolism in the rat. Xenobiotica 12: 787–800

    CAS  PubMed  Google Scholar 

  • Kato R, Yamazoe Y (1993) Hormonal regulation of cytochrome P450 in rat liver. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 447–459

    Google Scholar 

  • Kawamoto T, Mitsuuchi Y, Ohnishi T, Ichikawa Y, Yokoyama Y, Sumimoto H, Toda K, Miyahara K, Kuribayashi I, Nakao K, Hosofa K, Yamamoto Y, Imura H, Shizuta Y (1990) Cloning and expression of a cDNA for human cytochrome P450aldo as related to primary aldosteronism. Biochem Biophys Res Commun 173: 309–316

    Article  CAS  Google Scholar 

  • Keeney DS (1995) Perspectives in steroid hydroxylase gene expression: novel sites of expression during embryonic development. Endocrine Res 21: 103–107

    CAS  Google Scholar 

  • Khatsenko OG, Gross SS, Rifkind AB, Vane JR (1993) Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA 90: 11147–11151

    CAS  PubMed  Google Scholar 

  • Kido T, Kimura T (1979) The formation of binary and ternary complexes of cytochrome P450scc with adrenodoxin and adrenodoxin reductase-adrenodoxin complex. J Biol Chem 254: 11806–11815

    CAS  PubMed  Google Scholar 

  • Klatt P, Heinzel B, John M, Kastner M, Bohme E, Mayer B (1992) Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. J Biol Chem 267: 11374–11378

    CAS  PubMed  Google Scholar 

  • Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75: 376–386

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Iwamoto T, Honda K (1994) Spectral intermediate in the reaction of ferrous cytochrome P450cam with superoxide anion. Biochem Biophys Res Commun 201: 1348–1355

    CAS  PubMed  Google Scholar 

  • Koga H, Sagara Y, Yaoi T, Tsujimura M, Nakamura K, Sekimizu K, Makino R, Shimada H, Ishimura Y, Yura K, Co M, Ikeguchi M, Horiuchi T (1993) Essential role of the ARG 112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin. FEBS Lett 331: 109–113

    Article  CAS  PubMed  Google Scholar 

  • Koop DR, Coon MJ (1979) Purification and properties of P-4503b, a constitutive form of cytochrome P-450, from rabbit liver microsomes. Biochem Biophys Res Commun 91: 1075–1081

    CAS  PubMed  Google Scholar 

  • Krebs EG (1986) The enzymology of control by phosphorylation. In: Boyer PD, Krebs EG (eds) The enzymes, 3rd edn, vol XVII/A. Academic, New York, pp 3–20

    Google Scholar 

  • Kunz BC, Rehorek M, Hauser H, Winterhalter KH, Richter C (1985) Decreased lipid order induced by microsomal cytochrome P450 and NADPH-cytochrome P450 reductase in model membranes: fluorescence and electron spin resonance studies. Biochemistry 24: 2889–2895

    Article  CAS  PubMed  Google Scholar 

  • Kunz BC, Vergeres G, Winterhalter K, Richter C (1991) Chemical modification of rat liver microsomal cytochrome P450: study of enzymic properties and membrane topology. Biochim Biophys Acta 1063: 226–234

    CAS  PubMed  Google Scholar 

  • Kuthan H, Ullrich V (1982) Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur J Biochem 126: 583–588

    Article  CAS  PubMed  Google Scholar 

  • Kuthan H, Tsuji H, Graf H, Ullrich V, Werringloer J, Estabrook RW (1978) Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. FEBS Lett 91: 343–345

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara S, Omura T (1980) Different requirement for cytochrome b5 in NADPH-microsomal cytochrome P450. Biochem Biophys Res Commun 96: 1562–1568

    Article  CAS  PubMed  Google Scholar 

  • La Du BN, Trousof N, Brodie BB (1953) Enzymatic dealkylation of aminopyrine and other alkylamines in vitro. Fed Proc 12: 339

    Google Scholar 

  • La Du BN, Gaudette L, Trousof N, Brodie BB (1955) Enzymatic dealkylation of aminopyrine (Pyramidon) and other alkylamines. J Biol Chem 214: 741–752

    Google Scholar 

  • Lacassagne A, Buu-Hoi NP, Rudali G (1945) Inhibition of the carcinogenic action produced by a weakly carcinogenic hydrocarbon on a highly active carcinogeneic hydrocarbon. Br J Exp Pathol 26: 5–12

    CAS  Google Scholar 

  • Lambeth JD (1981) Cytochrome P450scc — cardiolipin as an effector of activity of a mitochondrial cytochrome P450. J Biol Chem 256: 4757–4762

    CAS  PubMed  Google Scholar 

  • Lambeth JD (1990) Enzymology of mitochondrial side-chain cleavage by cytochrome P450scc. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 3. Akademie, Berlin, pp 58–100

    Google Scholar 

  • Lambeth JD, Geren LM, Millet F (1984) Adrenodoxin interaction with adrenodoxin reductase and cytochrome P450scc. Cross-linking of protein complexes and effects of adrenodoxin modification by EDC. J Biol Chem 259: 10025–10029

    CAS  PubMed  Google Scholar 

  • Lambeth JD, Kriengsiri S (1985) Cytochrome P450scc-adrenodoxin interactions: ionic effects on binding and regulation of cytochrome P450 reduction of bound steroid substrates. J Biol Chem 260: 8810–8816

    CAS  PubMed  Google Scholar 

  • Lambeth JD, Pember SO (1983) Cytochrome P450scc-adrenodoxin complex. Reduction properties of the substrate-associated cytochrome and relation of the reduction states of heme and iron-sulfur centers to association of the proteins. J Biol Chem 258: 5596–5602

    CAS  PubMed  Google Scholar 

  • Lambeth JD, Seybert DW, Kamin H (1979) Ionic effects on adrenal steroidogenic electron transport. The role of adrenodoxin as an electron shuttle. J Biol Chem 254: 7255–7264

    CAS  PubMed  Google Scholar 

  • Lambeth JD, Seybert DW, Kamin H (1980a) Phospholipid vesicle reconstituted cytochrome P450scc — mutually facilitated binding of cholesterol and adrenodoxin. J Biol Chem 255: 138–143

    CAS  PubMed  Google Scholar 

  • Lambeth JD, Kamin H, Seybert DW (1980b) Phosphatidylcholine vesicle reconstituted cytochrome P450scc. Role of the membrane in control of activity and spin state of the cytochrome. J Biol Chem 255: 8282–8288

    CAS  PubMed  Google Scholar 

  • Landers JP, Bunce NJ (1991) The Ah receptor and the mechanism of dioxin toxicity. Biochem J 276: 273–287

    CAS  PubMed  Google Scholar 

  • Larroque C, Van Lier JE (1980) The subzero temperature stabilized oxyferro complex of purified cytochrome P450scc. FEBS Lett 115: 175–177

    Article  CAS  PubMed  Google Scholar 

  • Lecoeur S, Bonierbale E, Challine D, Gautier JC, Valadon P, Dansette PM, Catinot R, Ballet F, Mansuy D, Beaune PH (1994) Specificity of in vitro covalent binding of tienilic acid metabolites to human liver microsomes in relationship to the type of hepatotoxicity: comparison with two directly hepatotoxic drugs. Chem Res Toxicol 7: 434–442

    Article  CAS  PubMed  Google Scholar 

  • Leeder JS, Riley RJ, Cook VA, Spielberg SP (1992) Human anti-cytochrome P450 antibodies in aromatic anticonvulsant-induced hypersensitivity reactions. J Pharmacol Exp Ther 263: 360–367

    CAS  PubMed  Google Scholar 

  • Lehnerer M, Schulze J, Petzold A, Bernhardt R, Hlavica P (1995) Rabbit liver cytochrome P450 2B5: high-level expression of the full-length protein in Escherichia coli, purification, and reconstitution of catalytic activity. Biochim Biophys Acta (submitted)

    Google Scholar 

  • Lewis DFV, Tamburini PP, Gibson GG (1986) The interaction of a homologous series of hydrocarbons with hepatic cytochrome P450. Molecular orbital derived electronic and structural parameters influencing the haemoprotein spin state. Chem Biol Interact 58: 289–300

    CAS  PubMed  Google Scholar 

  • Liang N, Mauk AG, Pielak GJ, Johnson JA, Smith M, Hoffman BM (1988) Regulation of interprotein electron transfer by residue 82 of yeast cytochrome c. Science 240: 311–313

    CAS  PubMed  Google Scholar 

  • Loida PJ, Sligar SG (1993a) Engineering cytochrome P450cam to increase the stereospecificity and coupling of aliphatic hydroxylation. Protein Eng 6: 207–212

    CAS  PubMed  Google Scholar 

  • Loida PJ, Sligar SG (1993b) Molecular recognition in cytochrome P450: mechanism for the control of uncoupling reactions. Biochemistry 32: 11530–11538

    Article  CAS  PubMed  Google Scholar 

  • Loosemore M, Light DR, Wash CH (1980) Studies on the autoinactivation behaviour of pure reconstituted phenobarbital-induced cytochrome P450 isozyme from rat liver. J. Biol Chem 255: 9017–9020

    CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Snyder SH (1992) Nitric oxide, a novel biologic messenger. Cell 70: 705–707

    CAS  PubMed  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P450 in fatty acid-hydroxylation in soluble enzyme system from liver microsomes. J Biol Chem 243: 1331–1332

    CAS  PubMed  Google Scholar 

  • Lu AYH, Levin W (1972) Partial purification of cytochromes P450 and P448 from rat liver microsomes. Biochem Biophys Res Commun 46: 1334–1339

    Article  CAS  PubMed  Google Scholar 

  • Lu AYH, Junk KW, Coon MJ (1969a) Resolution of the cytochrome P450-containing ω-hydroxylation system of the liver microsomes into three components. J Biol Chem 244: 3714–3721

    CAS  PubMed  Google Scholar 

  • Lu AYH, Strobel HW, Coon MJ (1969b) Hydroxylation of benzphetamine and other drugs by a solubilized form of cytochrome P450 from liver microsomes: lipid requirement for drug demethylation. Biochem Biophys Res Commun 36: 545–551

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Lala DS, Baity LA, Maede C, Parker KL (1995) A cell-specific nuclear receptor plays essential roles in adrenal and gonadal development. Endocrine Res 21: 517–524

    CAS  Google Scholar 

  • Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) A conserved residue of cytochrome P450 is involved in heme-oxygen stability and activation. J Am Chem Soc 111: 9252–9253

    Article  CAS  Google Scholar 

  • Mason HS (1957) Mechanisms of oxygen metabolism. Science 125: 1185–1188

    CAS  PubMed  Google Scholar 

  • Mason HS, Fowlks WL, Peterson E (1955) Oxygen transfer and electron transport by the phenolase complex. J Am Chem Soc 77: 2914–2915

    CAS  Google Scholar 

  • Masters BSS (1994) Nitric oxide syntheses: why so complex? Annu Rev Nutr 14: 131–145

    Article  CAS  PubMed  Google Scholar 

  • Masters BSS, Kamin H (1965) Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem 240: 921–931

    CAS  Google Scholar 

  • Mayuzumi H, Sambongi C, Hiroya K, Shimizu T, Tateishi T, Hatano M (1993) Effect of mutations of ionic amino acids of cytochrome P450 1A2 on catalytic activities toward 7-ethoxycoumarin and methanol. Biochemistry 32: 5622–5628

    Article  CAS  PubMed  Google Scholar 

  • McMillian K, Bredt DS, Hirsch J, Snyder SH, Mastes BSS (1992) Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme which binds carbon monoxide. Proc Natl Acad Sci USA 89: 1141–1145

    Google Scholar 

  • Mera E, Muriel P, Castillo C, Mourelle M (1994) Cimetidine prevents and partially reverses CC14-induced liver cirrhosis. J Appl Toxicol 14: 87–90

    CAS  PubMed  Google Scholar 

  • Miller EC, Miller JA, Brown RR (1952) On the inhibitory action of certain polycyclic hydrocarbons on azo dye carcinogenesis. Cancer Res 12: 282–283

    Google Scholar 

  • Miller WL (1988) Molecular biology of seroid hormone synthesis. Endocr Rev 9: 295–318

    CAS  PubMed  Google Scholar 

  • Mitani F, Horie S (1969) Studies on P450. VI. The spin state of P450 solubilized from bovine adrenocortical mitochondria. J Biochem (Tokyo) 66: 139–149

    CAS  PubMed  Google Scholar 

  • Mitani F, Suzuki H, Hata J-I, Ogishima T, Shimada H, Ishimura Y (1994) A novel cell layer without corticosteroid-synthesizing enzymes in rat adrenal cortex: histochemical detection and possible physiological role. Endocrinology 135: 431–438

    Article  CAS  PubMed  Google Scholar 

  • Miwa GT, Lu AYH (1984) The association of cytochrome P450 and NADPH-cytochrome P450 reductase in phospholipid membranes. Arch Biochem Biophys 234: 161–166

    Article  CAS  PubMed  Google Scholar 

  • Miwa GT, West SB, Huang MT, Lu AYH (1979) Studies on the association of cytochrome P450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system. J Biol Chem 254: 5695–5700

    CAS  PubMed  Google Scholar 

  • Mkrtchian SL, Andersson KK (1990) A possible role of cAMP-dependent phosphorylation of hepatic microsomal cytochrome P450: a mechanism to increase lipid peroxidation in response to hormone. Biochem Biophys Res Commun 166: 787–793

    Article  CAS  PubMed  Google Scholar 

  • Mkrtchian S, Eliasson E, Halpert JR, Ingelman-Sundberg M (1994) Substrate-regulated, cAMP-dependent phosphorylation of cytochrome P450 3A1. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 829–832

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Exp Ther 43: 109–142

    CAS  Google Scholar 

  • Monier S, Van Luc P, Kreibich G, Sabatini DD, Adesnik M (1988) Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol 107: 457–470

    Article  CAS  PubMed  Google Scholar 

  • Morgan ET, Coon MJ (1984) Effect of cytochrome b5 on cytochrome catalyzed reactions. Drug Metab Dispos 12: 358–364

    CAS  PubMed  Google Scholar 

  • Mornet E, Dupont J, Vitek A, White PC (1989) Characterization of two genes encoding human steroid 11β-hydroxylase (P45011β). J Biol Chem 264: 20961–20967

    CAS  PubMed  Google Scholar 

  • Morohashi K, Iida H, Nomura M, Hatano O, Honda S, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y (1994) Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol Endocrinol 8: 643–653

    Article  CAS  PubMed  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355: 796–802

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay CK, Chatterjee IB (1994) NADPH-initiated cytochrome P450-mediated free metal ion-independent oxidative damage of microsomal proteins. J Biol Chem 269: 13390–13397

    CAS  PubMed  Google Scholar 

  • Müller GC, Miller JA (1953) The metabolism of methylated amino azo dyes. II. Oxidative demethylation by rat liver homogenates. J Biol Chem 202: 579–587

    Google Scholar 

  • Murayama N, Shimada M, Yamazoe Y, Kato R (1991) Difference in the susceptibility of two phenobarbital-inducible forms, P450IIB1 and P450IIB2, to thyroid hormone-induced and growth hormone-induced suppression in rat liver: phenobarbital-inducible P450IIB2 suppression by thyroid hormone acting directly, but not through the pituitary system. Mol Pharmacol 39: 811–817

    CAS  PubMed  Google Scholar 

  • Nadler SG, Strobel HW (1988) Role of electrostatic interactions in the reaction of NADPH-cytochrome P450 reductase with cytochromes P450. Arch Biochem Biophys 261: 418–429

    Article  CAS  PubMed  Google Scholar 

  • Nadler SG, Strobel HW (1991) Identification and characterization of an NADPH-cytochrome P450 reductase-derived peptide involved in binding to cytochrome P450. Arch Biochem Biophys 290: 277–284

    Article  CAS  PubMed  Google Scholar 

  • Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H (1993) Cytochrome P450 55A1 (P450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 268: 8350–8355

    CAS  PubMed  Google Scholar 

  • Nakashima N, Sakai Y, Sakai H, Yanase T, Haji M, Umeda F, Koga S, Hoshita T, Nawata H (1994) A point mutation in the bile acid biosynthetic enzyme sterol 27-hydroxylase in a family with cerebrotendinous xanthomatosis. J Lipid Res 35: 663–668

    CAS  PubMed  Google Scholar 

  • Narhi LO, Fulco AJ (1987) Identification and characterization of two functional domains in cytochrome P450 BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262: 6683–6690

    CAS  PubMed  Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10: 1–14

    CAS  PubMed  Google Scholar 

  • Nelson DR, Strobel HW (1988) On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 263: 6038–6050

    CAS  PubMed  Google Scholar 

  • Nelson DR, Strobel HW (1989) Secondary structure prediction of 52 membrane-bound cytochromes P450 show a strong structural similarity to P450cam. Biochemistry 28: 656–660

    CAS  PubMed  Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12: 1–51

    CAS  PubMed  Google Scholar 

  • Niederau C, Schultz HU, Letko G (1991) Involvement of free radicals in the pathophysiology of chronic pancreatitis: potential of treatment with antioxidant and scavenger substances. Klin Wochenschr 69: 1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Nisimoto Y, Lambeth JD (1985) NADPH-cytochrome P450 reductase-cytochrome b5 interactions: cross-linking of the phospholipid vesicle-associated proteins by a water-soluble carbodiimide. Arch Biochem Biophys 241: 386–396

    Article  CAS  PubMed  Google Scholar 

  • Nordblom GD, Coon MJ (1977) H2O2 formation and stoichiometry of hydroxylation reactions catalyzed by highly purified liver microsomal cytochrome P450. Arch Biochem Biophys 180: 343–347

    Article  CAS  PubMed  Google Scholar 

  • Ohmori S, Misaizu T, Nakamura T, Takano N, Kitagawa H, Kitada M (1993) Differential role in lipid peroxidation between rat P450 1A1 and P450 1A2. Biochem Pharmacol 46: 55–60

    CAS  PubMed  Google Scholar 

  • Okey AB (1990) Enzyme induction in the cytochrome P450 system. Pharmacol Ther 45: 241–298

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239: 2370–2378

    CAS  PubMed  Google Scholar 

  • Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (1966) Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P450 reductase. Arch Biochem Biophys 117: 660–673

    Article  CAS  Google Scholar 

  • Onoda M, Hall PF (1982) Cytochrome b5 stimulates purified testicular microsomal cytochrome P450 (C21 side-chain cleavage). Biochem Biophys Res Commun 108: 454–460

    CAS  PubMed  Google Scholar 

  • Onuchic JN, Beratan DN (1990) A predicitive theoretical model for electron tunneling pathways in proteins. J Chem Phys 92: 722–733

    Article  CAS  Google Scholar 

  • Oprian DD, Coon MJ (1982) Reactions of oxygenated P450 LM4. In: Sato R, Kato R (eds) Microsomes, drug oxidation and drug toxicity. Wiley, New York, pp 139–145

    Google Scholar 

  • Oprian DD, Gorsky LD, Coon MJ (1983) Properties of the oxygenated form of liver microsomal cytochrome P450. J Biol Chem 258: 8684–8691

    CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR (1989) Cytochrome P450 catalysis: radical intermediates and dehydrogenation reactions. Pharmacol Sci 10: 354–359

    CAS  Google Scholar 

  • Paller MS, Jacob HS (1994) Cytochrome P450 mediates tissue-damaging hydroxyl radical formation during reoxygenation of the kidney. Proc Natl Acad Sci USA 91: 7002–7006

    CAS  PubMed  Google Scholar 

  • Partanen J, Campbell RD (1991) Substitution of Ile-172 to Asn in the steroid 21-hydroxylase B (P450c21B) gene in a Finnish patient with the simple virilizing form of congenital adrenal hyperplasia. Hum Genet 87: 716–720

    Article  CAS  PubMed  Google Scholar 

  • Pederson TC, Austin RH, Gunsalus IC (1977) Redox and ligand dynamics in P450cam-putidaredoxin complexes. In: Ullrich V (ed) Microsomes and drug oxidations. Pergamon, Oxford, pp 275–283

    Google Scholar 

  • Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258: 1748–1755

    CAS  PubMed  Google Scholar 

  • Pember SO, Powell GL, Lambeth JD (1983) Cytochrome P450scc — phospholipid interactions. Evidence for a cardiolipin binding site and thermodynamics of enzyme interactions with cardiolipin, cholesterol and adrenodoxin. J Biol Chem 258: 3198–3206

    CAS  PubMed  Google Scholar 

  • Persson JO, Terelius Y, Ingelman-Sundberg M (1990) Cytochrome P450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P450-mediated reduction of oxygen and carbon tetrachloride. Xenobiotica 20: 887–900

    CAS  PubMed  Google Scholar 

  • Peterson JA, Ishimura Y, Griffin BW (1972) Pseudomonas putida cytochrome P450: characterization of an oxygenated form of the hemoprotein. Arch Biochem Biophys 149: 197–208

    Article  CAS  PubMed  Google Scholar 

  • Peterson JA, Ebel RE, O'Keefe DH, Matsubara T, Estabrook RW (1976) Temperature dependence of cytochrome P450 reduction. J Biol Chem 251: 4010–4016

    CAS  PubMed  Google Scholar 

  • Peterson JA, White RE, Yasukochi Y, Coomes ML, O'Keeffe DH, Eble RE, Masters BSS, Ballou DP, Coon MJ (1977) Evidence that purified liver microsomal cytochrome P450 is a one-electron acceptor. J Biol Chem 252: 4431–4434

    CAS  PubMed  Google Scholar 

  • Peterson JA, Lu J-Y, Geisselsoder J, Graham-Lorence S, Carmona C, Witney F, Lorence MC (1992) Cytochrome P450terp isolation and purification of the protein and cloning and sequencing of its operon. J Biol Chem 267: 14193–14203

    CAS  PubMed  Google Scholar 

  • Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem 237: 2652–2660

    CAS  PubMed  Google Scholar 

  • Poland A, Glover E (1974) Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase with 3-methylcholanthrene. Mol Pharmacol 10: 349–359

    CAS  PubMed  Google Scholar 

  • Porter TD (1994) Mutagenesis at a highly conserved phenylalanine in cytochrome P450 2E1 affects heme incorporation and catalytic activity. Biochemistry 33: 5942–5946

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL, Raag R (1992) Cytochrome P450cam: crystallography, oxygen activation, and electron transfer. FASEB J 6: 674–679

    CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel B, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6 Å crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260: 16122–16130

    CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195: 687–700

    Article  CAS  PubMed  Google Scholar 

  • Powis G, See KL, Santone KS, Melder DC, Hodnett EM (1987) Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their activity. Biochem Pharmacol 36: 2473–2479

    Article  CAS  PubMed  Google Scholar 

  • Pyerin W, Taniguchi H (1989) Phosphorylation of hepatic phenobarbital-inducible cytochrome P450. EMBO J 8: 3003–3010

    CAS  PubMed  Google Scholar 

  • Pyerin W, Wolf CR, Kinzel V, Kübler D, Oesch F (1983) Phosphorylation of cytochrome P450-dependent monooxygenase components. Carcinogenesis 4: 573–576

    CAS  PubMed  Google Scholar 

  • Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of the cytochrome P450cam active-site mutant Thr252Ala. Biochemistry 30: 11420–11429

    CAS  PubMed  Google Scholar 

  • Rapoport R, Raikhinstein M, Sklan D, Hanukoglu I (1994) Electron pathways in adrenal mitochondrial cytochrome P450 systems: relative rates of leakage and hydroxylation. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 357–363

    Google Scholar 

  • Rashba-Step J, Cederbaum AI (1994) Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH. Mol Pharmacol 45: 150–157

    CAS  PubMed  Google Scholar 

  • Rashba-Step J, Turro NJ, Cederbaum AI (1993) Increased NADPH-and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Arch Biochem Biophys 300: 401–408

    CAS  PubMed  Google Scholar 

  • Rauschenbach R, Isernhagen M, Noeske-Jungblut C, Boidol W, Siewert G (1993) Cloning sequencing and expression of the gene for cytochrome P450meg, the steroid-15β-monooxygenase from Bacillus megaterium ATCC 13368. Mol Gen Genet 241: 170–176

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s. Science 261: 731–736

    CAS  PubMed  Google Scholar 

  • Rein H, Jung C (1993) Metabolic reactions: mechanism of substrate oxygenation. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 105–122

    Google Scholar 

  • Rein H, Ristau O (1964) Über den Nachweis von zwei magnetischen Formen bei einigen Methämoglobinkomplexen. Naturwissenschaften 20: 480–481

    Google Scholar 

  • Rein H, Jänig GR, Winkler W, Ruckpaul K (1976a) Circular dichroism of partially purified cytochrome P450 from rabbit liver microsomes. Acta Biol Med Ger 35: K41–K50

    PubMed  Google Scholar 

  • Rein H, Maricic S, Jänig GR, Vuk-Pavlovic S, Benko B, Ristau O, Ruckpaul K (1976b) Haem accessibility in cytochrome P450 from rabbit liver. A proton magnetic relaxation study by stereochemical probes. Biochim Biophys Acta 446: 325–330

    CAS  PubMed  Google Scholar 

  • Rein H, Ristau O, Friedrich J, Jänig GR, Ruckpaul K (1977) Evidence for the existence of a high-spin low-spin equilibrium in liver microsomal cytochrome P450. FEBS Lett 75:19–22

    Article  CAS  PubMed  Google Scholar 

  • Rein H, Jung C, Ristau O, Friedrich J (1984) Biophysical properties of cytochrome P450, analysis of the reaction mechanism — thermodynamic aspects. In: Ruckpaul K, Rein H (eds) Cytochrome P450. Akademie, Berlin, pp 163–249

    Google Scholar 

  • Rein H, Jung C, Ristau O, Ruckpaul K (1986) Biological activation of oxygen. In: Shilov AE (ed) Fundamental research in homogeneous catalysis, vol 2. Gordon and Breach, London, pp 733–744

    Google Scholar 

  • Rein H, Ristau O, Blanck J, Ruckpaul (1989) The spin-redox couple as regulator of the catalytic activity of cytochrome P450. In: Schuster I (ed) Cytochrome P450: biochemistry and biophysics. Taylor and Francis, London, p 284

    Google Scholar 

  • Remmer H (1959) Der beschleunigte Abbau von Pharmaka in den Lebermikrosomen unter dem Einfluß von Luminal. Naunyn Schmiedebergs Arch Exp Pathol Pharmacol 235:279–290

    CAS  PubMed  Google Scholar 

  • Renaud JP, Boucher JL, Vadon S, Delaforge M, Mansuy D (1993) Particular ability of liver P450s 3A to catalyze the oxidation of N omega-hydroxyarginine to citrulline and nitrogen oxides and occurrence in No synthases of a sequence very similar to the heme-binding sequence in P450s. Biochem Biophys Res Commun 192:53–60

    Article  CAS  PubMed  Google Scholar 

  • Ristau O, Rein H, Jänig GR, Ruckpaul K (1978) Quantitative analysis of the spin equilibrium of cytochrome P450 LM2 fraction from rabbit liver microsomes. Biochim Biophys Acta 536:226–234

    CAS  PubMed  Google Scholar 

  • Ristau O, Wagnerova DM, Rein H, Ruckpaul K (1989) Cytochrome P450 enzyme system — kinetics of oxygen consumption and hydrogen peroxide formation. J Inorg Biochem 37:111–118

    Article  CAS  PubMed  Google Scholar 

  • Ruckpaul K (1993) Cytochrom P450 abhängige Enzyme — Targetenzyme für die Arzneistoffentwicklung? Pharm Unserer Zeit 22:296–304

    CAS  PubMed  Google Scholar 

  • Ruckpaul K, Bernhardt R (1984) Biochemical aspects of the monooxygenase system in the endoplasmic reticulum of mammalian liver. In: Ruckpaul K, Rein H (eds) Cytochrome P450. Akademie, Berlin pp 9–57

    Google Scholar 

  • Ruckpaul K, Rein H, Ballou DP, Coon MJ (1980) Analysis of interaction among purified components of the liver microsomal cytochrome P450 containing monooxygenase system by second derivative spectroscopy. Biochim Biophys Acta 626:41–56

    CAS  PubMed  Google Scholar 

  • Ruckpaul K, Rein H, Blanck J (1989) Regulation mechanisms of the activity of the hepatic endoplasmic cytochrome P450. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol I. Akademie, Berlin, pp 1–65

    Google Scholar 

  • Ryan DE, Levin W (1993) Age-and gender-related expression of rat liver cytochrome P450. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg (Handbook of experimental pharmacology, vol 105), pp 461–476

    Google Scholar 

  • Saito M (1990) Polychlorinated biphenyl-induced lipid peroxidation as measured by thiobarbituric acid-reactive substances in liver subcellular fractions of rats. Biochim Biophys Acta 1040:301–308

    Google Scholar 

  • Sakaguchi M, Mihara K, Sato R (1987) A short amino-terminal segment of microsomal cytochrome P450 functions both as an insertion and as a stop-transfer sequence. EMBO J 6:2425–2431

    CAS  PubMed  Google Scholar 

  • Sander M, Ganten D, Mellon SH (1994) Role of adrenal renin in the regulation of adrenal steroidogenesis by corticotropin. Proc Natl Acad Sci USA 91:148–152

    CAS  PubMed  Google Scholar 

  • Sanghvi A, Grassi E, Warty V, Diven W, Wight C, Lester R (1981) Reversible activation-inactivation of cholesterol 7-hydroxylase possibly due to phosphorylation-dephosphorylation. Biochem Biophys Res Commun 103:886–892

    Article  CAS  PubMed  Google Scholar 

  • Sanglard D, Sengstag C, Seghezzi W (1993) Probing the membrane topology of Canadida tropicalis cytochrome P450. Eur J Biochem 216:477–485

    Article  CAS  PubMed  Google Scholar 

  • Schenkman JB (1982) Brief history of cytochrome P450. In: Schenkman JB, Kupfer D (eds) Hepatic cytochrome P450 monooxygenase system. Pergamon, New York, pp 1–5

    Google Scholar 

  • Schenkman JB (1993) Metabolic reactions: mechanism of substrate oxygenation. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 527–545

    Google Scholar 

  • Schenkman JB, Remmer H, Estabrook RW (1967) Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol Pharmacol 8:178–188

    Google Scholar 

  • Schenkman JB, Tamburini PP, Jansson I, Epstein PM (1987) Interactions between cytochrome P450 and other components of the microsomal electron transfer system. In: Sato R, Omura T, Imai Y, Fujii-Kuriyama Y (eds) Cytochrome P450: new trends. Yamada Science Foundation, Japan, pp 59–64

    Google Scholar 

  • Scholz W, Schütze K, Kunz W, Schwarz M (1990) Phenobarbital enhances the formation of reactive oxygen in neoplastic rat liver nodules. Cancer 50:7015–7022

    CAS  Google Scholar 

  • Schwarz D (1991) Rotational motion and membrane topology of the microsomal cytochrome P450 system as analyzed by saturation transfer EPR. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 5. Akademie, Berlin, pp 93–137

    Google Scholar 

  • Schwarz D, Gast K, Meyer HW, Lachmann U, Coon MJ, Ruckpaul K (1984) Incorporation of the cytochrome P450 monooxygenase system into large unilamellar liposomes using octylglucoside, especially for measurements of protein diffusion in membranes. Biochem Biophys Res Commun 121:118–125

    CAS  PubMed  Google Scholar 

  • Schwarze W, Blanck J, Ristau O, Jänig GR, Pommerening K, Rein H, Ruckpaul K (1985) Spin state control of cytochrome P450 reduction and catalytic activity in a reconstituted P450 LM2 system as induced by a series of benzphetamine analogues. Chem Biol Interact 54:127–141

    CAS  PubMed  Google Scholar 

  • Seelig R, Renz M, Bunger G, Schroter H, Seelig HP (1993) Anti-LKM-1 antibodies determined by use of recombinant P450 2D6 in ELISA and western blot and their association with anti-HCV and HCV-RNA. Clin Exp Immunol 92:373–380

    CAS  PubMed  Google Scholar 

  • Serino F, Grevel J, Napoli KL, Kahan BD, Strobel HW (1993) Generation of oxygen free radicals during the metabolism of cyclosporin A: a cause-effect relationship with metabolism inhibition. Mol Cell Biochem 122:101–112

    Article  CAS  PubMed  Google Scholar 

  • Seybert DW (1990) Lipid regulation of bovine cytochrome P450 11β activity. Arch Biochem Biophys 279:188–194

    Article  CAS  PubMed  Google Scholar 

  • Seybert DW, Lancaster JR jr, Lambeth JD, Kamin H (1979) Participation of the membrane in the side chain cleavage of cholesterol. Reconstitution of cytochrome P450scc into phospholipid vesicles. J Biol Chem 254:12088–12098

    CAS  PubMed  Google Scholar 

  • Shen SJ, Strobel HW (1992) The role of cytochrome P450 lysine residues in the interaction between cytochrome P4501A1 and NADPH cytochrome P450 reductase. Arch Biochem Biophys 294:83–90

    Article  CAS  PubMed  Google Scholar 

  • Shen SJ, Strobel HW (1993) Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P4502B1 and NADPH cytochrome P450 reductase. Arch Biochem Biophys 304:257–265

    Article  CAS  PubMed  Google Scholar 

  • Shephard EA, Phillips IR, Bayney RM, Pike SF, Rabin BR (1983) Quantification of NADPH: cytochrome P450 reductase in liver microsomes by a specific radioimmunoassay technique. Biochem J 211:333–340

    CAS  PubMed  Google Scholar 

  • Shet MS, Fisher CW, Holmans PL, Estabrook RW (1993) Human cytochrome P450 3A4: enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase. Proc Natl Acad Sci USA 90:11748–11752

    CAS  PubMed  Google Scholar 

  • Shet MS, Fisher CW, Arlotto MP, Shackleton CH, Holmans PL, Martin-Wixtrom CA, Saeki Y, Estabrook RW (1994) Purification and enzymatic properties of a recombinant fusion protein expressed in Escherichia coli containing the domains of bovine P450 17A and rat NADPH-P450 reductase. Arch Biochem Biophys 311:402–417

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Ogishima T, Mitani F, Suzuki H, Murakami, Saruta T (1991) Regulation of aldosterone synthase cytochrome P450 in rat adrenals by angiotensin II and potassium. Endocrinology 128:2534–2539

    CAS  PubMed  Google Scholar 

  • Shimada H, Makino R, Imai M, Horiuchi T, Ishimura Y (1991) Mechanism of oxygen activation by cytochrome P450cam. In: Yamamoto S, Nozaki M, Ishimura Y (eds) International symposium on oxygenases and oxygen activation. Yamada Science Foundation, Japan, pp 133–136

    Google Scholar 

  • Shimada H, Makino R, Unno M, Horiuchi T, Ishimura Y (1994) Protein and electron transfer mechanism in dioxygen activation by cytochromes P450cam. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 229–306

    Google Scholar 

  • Shimizu T, Hirano K, Takahashi M, Hatano M, Fujii-Kuriyama (1988) Site-directed mutagenesis of rat liver cytochrome P450d: axial ligand and heme incorporation. Biochemistry 27: 4138–4141

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Murakami Y, Hatano M (1994) Glu318 and Thr319 mutations of cytochrome P450 1A2 remarkably enhance homolytic O-O cleavage of alkyl hydroperoxides. J Biol Chem 269: 13296–13304

    CAS  PubMed  Google Scholar 

  • Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1991) Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 266: 3372–3375

    CAS  PubMed  Google Scholar 

  • Shou M, Grogan J, Mancewicz JA, Krausz KW, Gonzalez FJ, Gelboin HV, Korzekwa KR (1994) Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450-active site. Biochemistry 33: 6450–6455

    Article  CAS  PubMed  Google Scholar 

  • Simpson ER, Mason JI, John ME, Zuber MX, Rodgers RJ, Waterman MR (1987) Regulation of the biosynthesis of steroidogenic enzymes. J Steroid Biochem 27: 801–805

    Article  CAS  PubMed  Google Scholar 

  • Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Corbin CJ, Mendelson CR (1993) Tissue-specific regulation of aromatase cytochrome P450 (CYP19) expression. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 611–625

    Google Scholar 

  • Sligar SG (1976) Coupling of spin, substrate and redox equilibria in cytochrome P450. Biochemistry 15: 5399–5406

    Article  CAS  PubMed  Google Scholar 

  • Sligar SG, Gunsalus IC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monooxygenase. Proc Natl Acad Sci USA 73: 1078–1082

    CAS  PubMed  Google Scholar 

  • Sligar SG, Lipscomb JD, Debrunner PG, Gunsalus IC (1974) Superoxide anion production by the autoxidation of cytochrome P450cam. Biochem Biophys Res Commun 61: 290–296

    Article  CAS  PubMed  Google Scholar 

  • Sligar SG, Filipovic D, Stayton P (1991) Mutagenesis of cytochromes P450cam and b5. Methods Enzymol 206: 31–49

    CAS  PubMed  Google Scholar 

  • Smettan G, Shkumatov VM, Pommerening K, Ruckpaul K (1985) Properties of reconstituted hybrid cytochrome P450 systems. In: Vereczky L, Magyar K (eds) Cytochrome P450, biochemistry biophysics and induction. Akademia Kiado, Budapest, pp 207–210

    Google Scholar 

  • Smith CAD, Gough AC, Leigh PN (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet 339: 1375–1377

    CAS  PubMed  Google Scholar 

  • Smith GCM, Tew DG, Wolf CR (1994) Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains. Proc Natl Acad Sci USA 91: 8710–8714

    CAS  PubMed  Google Scholar 

  • Sogawa K, Fujii-Kuriyama Y (1993) Regulation of cytochrome P450 expression. In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 493–501

    Google Scholar 

  • Song W-C, Brash AR (1991) Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P450. Science 253: 781–784

    CAS  PubMed  Google Scholar 

  • Song W-C, Baertschi SW, Boeglin WE, Harris TM, Brash AR (1993) Formation of epoxyalcohols by a purified allene oxide synthase. J Biol Chem 268: 6293–6298

    CAS  PubMed  Google Scholar 

  • Sousa RL, Marletta MA (1985) Inhibition of cytochrome P450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Arch Biochem Biophys 240: 345–357

    Article  CAS  PubMed  Google Scholar 

  • Spencer CB, Rifkind AB (1990) NAD(P)H: quinone oxidoreductase (DT-diaphorase) in chick embryo liver. Comparison to activity in rat and guinea pig liver and differences in coinduction with 7-ethoxyresorufin deethylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 39: 327–335

    Article  CAS  PubMed  Google Scholar 

  • Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim H, Doehmer J (1994) Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 91: 3559–3563

    CAS  PubMed  Google Scholar 

  • Staudt H, Lichtenberger F, Ullrich V (1974) The role of NADH in uncoupled microsomal monooxygenations. Eur J Biochem 46: 99–106

    Article  CAS  PubMed  Google Scholar 

  • Stayton PS, Sligar SG (1990) The cytochrome P450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling. Biochemistry 29: 7381–7386

    Article  CAS  PubMed  Google Scholar 

  • Stayton PS, Poulos TL, Sligar SG (1989) Putidaredoxin competitively inhibits cytochrome b5-cytochrome P450cam association: a proposed molecular model for a cytochrome P450cam electron transfer complex. Biochemistry 28: 8201–8205

    Article  CAS  PubMed  Google Scholar 

  • Stefek M (1993) In vitro studies on the interaction of the pyridoindole antioxidant stobadine with rat liver microsomal P450. Xenobiotica 23: 983–993

    CAS  PubMed  Google Scholar 

  • Straub P, Johnson EF, Kemper B (1993a) Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity. Arch Biochem Biophys 306: 521–527

    Article  CAS  PubMed  Google Scholar 

  • Straub P, Ramarao MK, Kemper B (1993b) Preference for aromatic substitutions at tryptophan-120, which is highly conserved and a potential mediator of electron transfer in cytochrome P450 2C2. Biochem Biophys Res Commun 197: 433–439

    Article  CAS  PubMed  Google Scholar 

  • Strobel HW, Shen S (1994) Studies of the interactions of microsomal cytochrome P450 reductase with cytochromes P450. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 341–348

    Google Scholar 

  • Strobel HW, Lu AYH, Heidema J, Coon MJ (1970) Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P450 and in fatty acid, hydrocarbon, and drug hydroxylation. J Biol Chem 245: 4851–4854

    CAS  PubMed  Google Scholar 

  • Stuehr DJ, Ikeda-Saito M (1992) Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P450-like hemoproteins that contain a flavin semiquione radical. J Biol Chem 267: 20547–20550

    CAS  PubMed  Google Scholar 

  • Sturman SG, Williams AC (1991) Pathogenesis of Parkinson's disease. Curr Sci 4: 323–330

    Google Scholar 

  • Szczesna-Skorupa E, Browne N, Mead D, Kemper B (1988) Positive charges at the NH2-terminus convert the membrane-anchor signal peptide of cytochrome P450 to a secretory signal peptide. Proc Natl Acad Sci USA 85: 738–742

    CAS  PubMed  Google Scholar 

  • Tamburini PP, Schenkman JB (1986a) Mechanism of interaction between cytochromes P450 RLM5 and b5. Evidence for an electrostatic mechanism involving cytochrome b5 heme propionate groups. Arch Biochem Biophys 245: 512–522

    Article  CAS  PubMed  Google Scholar 

  • Tamburini PP, Schenkman JB (1986b) Differences in the mechanism of functional interaction between NADPH-cytochrome P450 reductase and its redox partners. Mol Pharmacol 30: 178: 185

    CAS  PubMed  Google Scholar 

  • Tamburini PP, Gibson GG, Backes WL, Sligar SG, Schenkman JB (1984) Reduction kinetics of purified rat liver cytochrome P450. Evidence for a sequential reaction mechanism dependent on the hemoprotein spin state. Biochemistry 23: 4526–4533

    Article  CAS  PubMed  Google Scholar 

  • Tamburini PP, White RW, Schenkman JB (1985) Chemical characterization of protein-protein interactions between cytochrome P450 and cytochrome b5. J Biol Chem 260: 4007–4015

    CAS  PubMed  Google Scholar 

  • Tanaka M, Haniu M, Yasunobu KT (1973) The amino acid sequence of bovine adrenodoxin. J Biol Chem 248: 1141–1157

    CAS  PubMed  Google Scholar 

  • Taniguchi T, Kimura T (1975) Studies on NO2-Tyr82 and NH2-Tyr82 derivatives of adrenodoxin. Effects of chemical modification on electron transferring activity. Biochemistry 14: 5573–5578

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Kimura T (1976) Studies on nitrotyrosine-82 and aminotyrosine-82 derivatives of adrenodoxin. Effects of chemical modification on the complex formation with adrenodoxin reductase. Biochemistry 15: 2849–2853

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi H, Imai Y, Iyanagi T, Sato R (1979) Interaction between NADPH-cytochrome P450 reductase and cytochrome P450 in the membrane of phosphatidylcholine vesicles. Biochim Biophys Acta 550: 341–356

    CAS  PubMed  Google Scholar 

  • Taniguchi H, Pyerin W, Stier A (1985) Conversion of hepatic microsomal cytochrome P450 to P420 upon phosphorylation by cyclic AMP-dependent protein kinase. Biochem Pharmacol 34: 1835–1837

    Article  CAS  PubMed  Google Scholar 

  • Tanner CM (1991) Abnormal liver enzyme-mediated metabolism in Parkinson's disease: a second look. Neurology 4: 89–91

    Google Scholar 

  • Tsubaki M, Iwamoto Y, Hiwatashi A, Ichikawa Y (1989) Inhibition of electron transfer from adrenodoxin to cytochrome P450scc by chemical modification with pyridoxal-5′-phosphate: identification of adrenodoxin-binding site of cytochrome P450scc. Biochemistry 28: 6899–6907

    CAS  PubMed  Google Scholar 

  • Tuckey RC, Kamin H (1982) The oxyferro complex of adrenal cytochrome P450scc: effect of cholesterol and intermediates on its stability and optical characteristics. J Biol Chem 257: 9309–9314

    CAS  PubMed  Google Scholar 

  • Tuls J, Geren L, Millett F (1989) Fluorescein isothiocyanate specifically modifies lysine 338 of cytochrome P450scc and inhibits adrenodoxin binding. J Biol Chem 264: 16421–16425

    CAS  PubMed  Google Scholar 

  • Tusie-Luna MT, Speiser PW, Dumic M, New MI, White PC (1991) A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol 5: 685–692

    CAS  PubMed  Google Scholar 

  • Uhlmann H, Kraft R, Bernhardt R (1994) C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P450. J Biol Chem 269: 22557–22564

    CAS  PubMed  Google Scholar 

  • Ullah AJ, Murray RI, Bhattacharyya PK, Wagner GC, Gunsalus IC (1990) Protein components of a cytochrome P450 linalool 8-methyl hydroxylase. J Biol Chem 265: 1345–1351

    CAS  PubMed  Google Scholar 

  • Usanov SA, Turko IV, Chashchin VL, Akhrem AA (1985) Cross-linking studies of steroidogenic electron transfer: covalent complex of adrenodoxin reductase with adrenodoxin. Biochim Biophys Acta 832: 288–296

    CAS  PubMed  Google Scholar 

  • Usanov SA, Chashchin VL, Akhrem AA (1990) Cytochrome P450-dependent pathways of the biosynthesis of steroid hormones. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 3. Akademie, Berlin, pp 1–57

    Google Scholar 

  • Uvarov VY, Bachmanova GI, Archakov AI, Sukhomudrenko AG (1980) Conformation and thermostability of soluble cytochrome P450 incorporated into liposomal membrane and cytochrome P450 reductase (in Russian). Biochemistry 45: 1463–1469

    CAS  Google Scholar 

  • Van de Straat R (1987) Role of hepatic microsomal and purified cytochrome P450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen. Biochem Pharmacol 36: 613–619

    PubMed  Google Scholar 

  • Van de Straat R, Vromans RM, Bosman P, de Vries J, Vermeulen NPE (1988) Cytochrome P450-mediated oxidation of substrates by electron-transfer; role of oxygen radicals and of 1-and 2-electron oxidation of paracetamol. Chem Biol Interact 64: 267–280

    PubMed  Google Scholar 

  • Van der Hoeven TA, Coon MJ (1974) Preparation and properties of partially purified cytochrome P450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase from rabbit liver microsomes. J Biol Chem 249: 6302–6310

    PubMed  Google Scholar 

  • Van Dyke RA, Baker MT, Jansson I, Schenkman J (1988) Reductive metabolism of halothane by purified cytochrome P450. Biochem Pharmacol 37: 2357–2361

    PubMed  Google Scholar 

  • Vergeres G, Winterhalter K, Richter C (1991) Localization of the N-terminal methionine of rat liver cytochrome P450 in the lumen of the endoplasmic reticulum. Biochim Biophys Acta 1063: 235–241

    CAS  PubMed  Google Scholar 

  • Vermilion JL, Coon MJ (1978) Purified liver microsomal NADPH-cytochrome P450 reductase (spectral characterization of oxidation-reduction states). J Biol Chem 253: 2694–2704

    CAS  PubMed  Google Scholar 

  • Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P450 reductase. J Biol Chem 256: 266–277

    CAS  PubMed  Google Scholar 

  • Vickery LE (1993) Cholesterol side chain cleavage cytochrome P450 (P450scc). In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 651–665

    Google Scholar 

  • Vilgrain I, Defaye G, Chambaz EM (1984) Adrenocortical cytochrome p450 responsible for cholesterol side chain cleavage (P450scc) is phosphorylated by the calcium-activated, phospholipid-sensitive protein kinase (protein kinase C). Biochem Biophys Res Commun 125: 554–561

    Article  CAS  PubMed  Google Scholar 

  • Voznesensky AI, Schenkman JB (1992) The cytochrome P4502B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge-pairing. J Biol Chem 267: 14669–14676

    CAS  PubMed  Google Scholar 

  • Voznesensky AI, Schenkman JB (1994) Quantitative analyses of electrostatic interactions between NADPH-cytochrome P450 reductase and cytochrome P450 enzymes. J Biol Chem 269: 15724–15731

    CAS  PubMed  Google Scholar 

  • Voznesensky AI, Schenkman JB, Pernecky SJ, Coon MJ (1994) The NH2-terminal region of rabbit CYP2E1 is not essential for interaction with NADPH-cytochrome P450 reductase. Biochem Biophys Res Commun 203: 156–161

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Waterman MR (1992) Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding. J Biol Chem 267: 22877–22882

    CAS  PubMed  Google Scholar 

  • Wade AE, Norred WP, Evans JS (1978) Lipids in drug detoxication. In: Hathcock JN, Coon J (eds) Nutrition and drug interrelations. Academic, New York, pp 475–503

    Google Scholar 

  • Wade RC (1990) Solvation of the active site of cytochrome P450cam. J Comput Aided Mol Des 4: 199–204

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Rousseau DL, Abu-Soud HM, Stuehr DJ (1994) Heme coordination of NO in NO synthase. Proc Natl Acad Sci USA 91: 10512–10516

    CAS  PubMed  Google Scholar 

  • Waterman MR, Estabrook RW (1983) The induction of microsomal electron transport enzymes. Mol Cell Biochem 53/54: 267–278

    Article  Google Scholar 

  • Waterman MR, Simpson ER (1990) Mechanisms of regulation of steroid hydroxylase gene expression. In: Ruckpaul K, Rein H (eds) Molecular mechanisms of adrenal steroidogenesis and aspects of regulation and application, Akademie, Berlin (Frontiers in biotransformation, vol 3), pp 101–126

    Google Scholar 

  • Wendoloski JJ, Matthew JB, Salemme FR (1987) Molecular dynamics of a cytochrome c-cytochrome b5 electron transfer complex. Science 238: 794–797

    CAS  PubMed  Google Scholar 

  • White KA, Marletta MA (1992) Nitric oxide synthase is a cytochrome P450 type hemoprotein. Biochemistry 31: 6627–6631

    CAS  PubMed  Google Scholar 

  • White KA, Marletta MA (1993) Nitric oxide synthase (NOS). In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 719–728

    Google Scholar 

  • White PC, Curnow KM, Pascoe L (1993) Steroid 11β-hydroxylase isozymes (CYP11B1 and CYP11B2). In: Schenkman JB, Greim H (eds) Cytochrome P450. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 105), pp 641–650

    Google Scholar 

  • White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rosler A (1991) A mutation in CYP11B1 (Arg-448—His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest 87: 1664–1667

    CAS  PubMed  Google Scholar 

  • White RE (1991) The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol Ther 49: 21–42

    Article  PubMed  Google Scholar 

  • White RE (1994) The importance of one-electron transfers in the mechanism of cytochrome P450. In: Lechner MC (ed) Cytochrome P450. 8th international conference. Libbey Eurotext, Paris, pp 333–340

    Google Scholar 

  • White RE, Coon MJ (1980) Oxygen activation by cytochrome P450. Annu Rev Biochem 49: 315–356

    Article  CAS  PubMed  Google Scholar 

  • White RE, McCarthy M (1986) Active site mechanics of liver-microsomal cytochrome P450. Arch Biochem Biophys 246: 19–32

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JP Jr (1990) Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Annu Rev Pharmacol Toxicol 30: 251–277

    CAS  PubMed  Google Scholar 

  • Whysner JA, Ramseyer J, Harding BW (1970) Substrate-induced changes in visible absorption and electron spin resonance properties of adrenal cortex mitochondria P450. J Biol Chem 245: 5441–5449

    CAS  PubMed  Google Scholar 

  • Williams CH, Kamin H (1962) Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem 237: 587–595

    CAS  PubMed  Google Scholar 

  • Willie A, McLean M, Liu RQ, Hilgen-Willis S, Saunders AJ, Pielak GJ, Sligar SG, Durham B, Millett F (1993) Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position 82 variants of yeast iso-1-cytochrome c. Biochemistry 32, 7519–7525

    Article  CAS  PubMed  Google Scholar 

  • Wu DA, Chung BC (1991) Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, and Ser268 result in complete, partial, or no loss of enzymatic activity, respectively. J Clin Invest 88: 519–523

    CAS  PubMed  Google Scholar 

  • Yasukochi Y, Masters BSS (1976) Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P450) reductase purified by biospecific affinity chromatography. J Biol Chem 2515337-5344

    Google Scholar 

  • Yasukochi Y, Peterson JA, Masters BSS (1979) NADPH-cytochrome c (P450) reductase (spectrophotometric and stopped flow kintic studies on the formation of reduced flavoprotein intermediates). J Biol Chem 254: 7097–7104

    CAS  PubMed  Google Scholar 

  • Yasukochi T, Okada O, Hara T, Sagara Y, Sekimizu K, Horiuchi T (1994) Putative functions of phenylalanine-350 of Pseudomonas putida cytochrome P-450cam. Biochim Biophys Acta 1204: 84–90

    CAS  PubMed  Google Scholar 

  • Zhukov AA, Archakov AI (1982) Complete stoichiometry of free NADPH oxidation in liver microsomes. Biochem Biophys Res Commun 109: 813–818

    Article  CAS  PubMed  Google Scholar 

  • Zhukov AA, Blanck J, Ristau O, Ruckpaul K, Archakov A (1989) Stoichiometry of cytochrome P450 catalysed oxygenase and oxidase reactions. Correlations with the spin state of the ferric heme. In: Schuster I (ed) Cytochrome P450: biochemistry and biophysics. Proceedings of the 6th international conference on biochemistry and biophysics of Cytochrome P450, Vienna, 3–8 July 1988, pp 85–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Bernhardt, R. (1995). Cytochrome P450: Structure, function, and generation of reactive oxygen species. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 127. Reviews of Physiology, Biochemistry and Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048267

Download citation

  • DOI: https://doi.org/10.1007/BFb0048267

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60135-7

  • Online ISBN: 978-3-540-49453-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics