Skip to main content
Log in

Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The HERG (KCNH2) channel is a voltage-sensitive potassium channel mainly expressed in cardiac tissue, but has also been identified in other tissues like neuronal and smooth muscle tissue, and in various tumours and tumour cell lines. The function of HERG has been extensively studied, but it is still not clear what mechanisms regulate the surface expression of the channel. In the present report, using human embryonic kidney cells stably expressing HERG, we show that diacylglycerol potently inhibits the HERG current. This is mediated by a protein kinase C-evoked endocytosis of the channel protein, and is dependent on the dynein–dynamin complex. The HERG protein was found to be located only in early endosomes and not lysosomes. Thus, diacylglycerol is an important lipid participating in the regulation of HERG surface expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:737–745

    Article  Google Scholar 

  2. Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 91:3438–3442

    Article  CAS  PubMed  Google Scholar 

  3. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  4. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803

    Article  CAS  PubMed  Google Scholar 

  5. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Guerchicoff A, Bianchi F, Guistetto C, Schimpf R, Brugada P (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35

    Article  CAS  PubMed  Google Scholar 

  6. Yap YG, Camm AJ (2003) Drug induced QT prolongation and torsades de pointes. Heart 89:1363–1372

    Article  CAS  PubMed  Google Scholar 

  7. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501:313–318

    Article  CAS  PubMed  Google Scholar 

  8. Farrelly AM, Ros S, Callaghan BP, Khoyi MA, Flemming N, Horowitz B, Sanders KM, Keef KD (3003) Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol 284:G883–G895

    Google Scholar 

  9. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi RA, Arcangeli A, Olivotto M, Wanke E (2000) Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J. 14:2601–2610

    Article  CAS  PubMed  Google Scholar 

  10. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti PA, Wanke E, Olivotto M, Mugnai G, Arcangeli A (2004) herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64:606–611

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    CAS  PubMed  Google Scholar 

  12. Johannes FJ, Prestle J, Dieterich S, Oberhagemann P, Link G, Pfizenmaier K (1995) Characterization of activators and inhibitors of protein kinase C mu. Eur J Biochem 15:303–307

    Article  Google Scholar 

  13. Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH (2004) Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Cell 119:407–418

    Article  CAS  PubMed  Google Scholar 

  14. Attali B, Honoré E, Lesage F, Lazdunski M, Bathain J (1992) Regulation of a major cloned voltage-gated K+ channel from human T lymphocytes. FEBS Lett 303:229–232

    Article  CAS  PubMed  Google Scholar 

  15. Lo CF, Numann R (1998) Independent and exclusive modulation of cardiac delayed rectifying K+ current by protein kinase C and protein kinase A. Circ Res 83:995–1002

    CAS  PubMed  Google Scholar 

  16. Bian J, Cui J, McDonald TV (2001) HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4, 5-bisphosphate. Circ Res 89:1168–1176

    Article  CAS  PubMed  Google Scholar 

  17. Wu S-N, Lo Y-K, Kuo B, Ching H-T (2001) Ceramide inhibits the inwardly rectifying potassium current in GH3 lactotrophes. Endocrinology 142:4785–4794

    Article  CAS  PubMed  Google Scholar 

  18. Chapman H, Ramström C, Korhonen L, Laine M, Wann KT, Lindholm D, Pasternack M, Törnquist K (2005) Down-regulation of the HERG (KCNH2) K+ channel by ceramide: Evidence for ubiquitin-mediated lysosomal degradation. J Cell Sci 118:5325–5334

    Article  CAS  PubMed  Google Scholar 

  19. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B, Wendt-Nordahl G, Kathöfer S, Kreye VA, Kathus HA, Schoels W, Kiehn J, Karle CA (2003) Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Cardiovasc Res 59:14–26

    Article  CAS  PubMed  Google Scholar 

  20. Barros F, Gomez-Varela D, Vitoria CG, Giraldéz T, de la Pena P (1998) Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C. J Physiol 511:333–346

    Article  CAS  PubMed  Google Scholar 

  21. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS (2007) Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation f pore forming subunits. J Physiol 581:479–493

    Article  CAS  PubMed  Google Scholar 

  22. Arcangeli AFB, Becchetti A, Faravelli L, Coronello M, Mini E, Olivotto M, Wanke E (1995) A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 489:455–471

    CAS  PubMed  Google Scholar 

  23. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  CAS  PubMed  Google Scholar 

  24. Kass GEN, Duddy SK, Orrenius S (1989) Activation of hepatocyte protein kinase C by redox-cycling quinones. Biochem J 260:499–507

    CAS  PubMed  Google Scholar 

  25. Nong Y, Huang YO, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422:302–307

    Article  CAS  PubMed  Google Scholar 

  26. Crociani O, Guasti L, Balzi M, Becchetti A, Wanke E, Olivotto M, Wymore RS, Arcangeli A (2003) Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955

    Article  CAS  PubMed  Google Scholar 

  27. Liscovitch M (1992) Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci 17:393–399

    Article  CAS  PubMed  Google Scholar 

  28. Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17:414–417

    Article  CAS  PubMed  Google Scholar 

  29. Wang YH, Shi CX, Dong F, Sheng JW, Xu YF (2008) Inhibition of the rapid component of the delayed rectifier potassium current in ventricular myocytes by angiotensin II via the AT1 receptor. Br J Pharmacol 154:429–439

    Article  CAS  PubMed  Google Scholar 

  30. Schledermann W, Wulfsen I, Schwrz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 532:143–163

    Article  CAS  PubMed  Google Scholar 

  31. Gomez-Varela D, Giraldéz T, de la Pena P, Dupuy SG, Garcia-Manso D, Barros F (2003) Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced r-ERG current reduction in GH3 rat anterior pituitary cells. J Physiol 547:913–929

    Article  CAS  PubMed  Google Scholar 

  32. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium currents. Nat Rev Neurosci 6:850–862

    Article  CAS  PubMed  Google Scholar 

  33. Heath BM, Terrar DA (2000) Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J Physiol 522:391–402

    Article  CAS  PubMed  Google Scholar 

  34. Leaney JL, Dekker LV, Tinker A (2001) Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca(2+)-independent protein kinase C. J Physiol 534:367–379

    Article  CAS  PubMed  Google Scholar 

  35. Perillan PR, Chen M, Potts EA, Simard JM (2002) Transforming growth factor-beta 1 regulates Kir2.3 inward rectifier K+ channels via phospholipase C and protein kinase C-delta in reactive astrocytes from adult rat brain. J Biol Chem 277:1974–1980

    Article  CAS  PubMed  Google Scholar 

  36. Karle CA, Zitron E, Zhang W, Wendt-Nordahl G, Kathöfer S, Thomas D, Gut B, Scholz E, Vahl CF, Katus HA, Kiehn J (2002) Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation 106:1493–1499

    Article  CAS  PubMed  Google Scholar 

  37. Mao J, Wang X, Chen F, Wang R, Rojas A, Shi Y, Piao H, Jiang C (2004) Molecular basis for the inhibition of G protein-coupled inward rectifier K(+) channels by protein kinase C. Proc Natl Acad Sci USA 101:1087–1092

    Article  CAS  PubMed  Google Scholar 

  38. Lin DH, Sterling H, Lerea KM, Giebisch G, Wang WH (2002) Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J Biol Chem 277:44278–44284

    Article  CAS  PubMed  Google Scholar 

  39. Nesti E, Everill B, Morielli AD (2004) Endocytosis as a mechanism for tyrosine kinase-dependent suppression of a voltage-gated potassium channel. Mol Biol Cell 15:4073–4088

    Article  CAS  PubMed  Google Scholar 

  40. Delaney KA, Murph MM, Brown LM, Radhakrishna H (2002) Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J Biol Chem 277:33439–33446

    Article  CAS  PubMed  Google Scholar 

  41. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D (2000) Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57:809–811

    Article  CAS  PubMed  Google Scholar 

  42. Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL (2002) Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 283:F630–639

    PubMed  Google Scholar 

  43. Choi WS, Khurana A, Mathur R, Viswanathan V, Steele DF, Fedida D (2005) Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor. Circ Res 97:363–371

    Article  CAS  PubMed  Google Scholar 

  44. Hu K, Huang CS, Jan YN, Jan LY (2003) ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 38:417–432

    Article  CAS  PubMed  Google Scholar 

  45. Herring D, Huang R, Singh M, Dillon GH, Leidenheimer NJ (2005) PKC modulation of GABAA receptor endocytosis and function is inhibited by mutation of a dileucin motif within the receptor beta 2 subunit. Neuropharmacology 48:181–194

    Article  CAS  PubMed  Google Scholar 

  46. Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennet MVL, Zukin RS (2001) Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4:382–390

    Article  CAS  PubMed  Google Scholar 

  47. Lin Y, Jover-Mangual T, Wong J, Bennet MVL, Zukin RS (2006) PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci USA 103:19902–19907

    Article  CAS  PubMed  Google Scholar 

  48. Sun H, Hu XQ, Moradel EM, Weight FF, Zhang L (2003) Modulation of 5-HT3 receptor-mediated response and trafficking by activation of protein kinase C. J Biol Chem 278:34150–34157

    Article  CAS  PubMed  Google Scholar 

  49. Thomas D, Kiehn J, Katus HA, Karle CA (2004) Adrenergic regulation of the rapid component of the cardiac delayed rectifier potassium curren, IKr, and the underlying hERG ion channel. Basic Res Cardiol 99:279–287

    Article  CAS  PubMed  Google Scholar 

  50. Bian JS, McDonald TV (2007) Phosphatidylinositol 4, 5-bisphosphate interactions with the HERG K + channel. Pflügers Arch Eur J Physiol 455:105–113

    Article  CAS  Google Scholar 

  51. Priori SG, Napolitano C, Paganini V, Cantu F, Schwatz PJ (1997) Molecular biology of the long QT syndrome: impact on management. Pacing Clin Electrophysiol 20:2052–2057

    Article  CAS  PubMed  Google Scholar 

  52. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Minerva Foundation, the Receptor Research Programme (Åbo Akademi University and University of Turku), the Sigrid Juselius Foundation, the Liv och Hälsa Foundation, the Center of Excellence in Cell Stress (Åbo Akademi University), and the Academy of Finland. K.T. was a senior investigator of the Academy of Finland during part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kid Törnquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramström, C., Chapman, H., Viitanen, T. et al. Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol. Cell. Mol. Life Sci. 67, 157–169 (2010). https://doi.org/10.1007/s00018-009-0176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0176-2

Keywords

Navigation