Skip to main content

Advertisement

Log in

Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cardiomyocytes continuously generate the contractile force to circulate blood through the body. Imbalances in contractile performance or energy supply cause adaptive responses of the heart resulting in adverse rearrangement of regular structures, which in turn might lead to heart failure. At the cellular level, cardiomyocyte remodeling includes (1) restructuring of the contractile apparatus; (2) rearrangement of the cytoskeleton; and (3) changes in energy metabolism. Dedifferentiation represents a key feature of cardiomyocyte remodeling. It is characterized by reciprocal changes in the expression pattern of “mature” and “immature” cardiomyocyte-specific genes. Dedifferentiation may enable cardiomyocytes to cope with hypoxic stress by disassembly of the energy demanding contractile machinery and by reduction of the cellular energy demand. Dedifferentiation during myocardial repair might provide cardiomyocytes with additional plasticity, enabling survival under hypoxic conditions and increasing the propensity to enter the cell cycle. Although dedifferentiation of cardiomyocytes has been described during tissue regeneration in zebrafish and newts, little is known about corresponding mechanisms and regulatory circuits in mammals. The recent finding that the cytokine oncostatin M (OSM) is pivotal for cardiomyocyte dedifferentiation and exerts strong protective effects during myocardial infarction highlights the role of cytokines as potent stimulators of cardiac remodeling. Here, we summarize the current knowledge about transient dedifferentiation of cardiomyocytes in the context of myocardial remodeling, and propose a model for the role of OSM in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56(2):130–140. doi:10.1097/FJC.0b013e3181e74a14

    Article  PubMed  CAS  Google Scholar 

  2. Pohjoismaki JL, Boettger T, Liu Z, Goffart S, Szibor M, Braun T (2012) Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucleic Acids Res 40(14):6595–6607. doi:10.1093/nar/gks301

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pohjoismaki JL, Kruger M, Al-Furoukh N, Lagerstedt A, Karhunen PJ, Braun T (2013) Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes. Mol BioSyst. doi:10.1039/c3mb25556e

    PubMed  Google Scholar 

  4. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12(3–4):331–343. doi:10.1007/s10741-007-9034-1

    Article  PubMed  CAS  Google Scholar 

  5. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 35(3):569–582

    Article  PubMed  CAS  Google Scholar 

  6. Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270. doi:10.1016/j.cell.2009.04.060

    Article  PubMed  CAS  Google Scholar 

  7. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19(10):1175–1187. doi:10.1101/gad.1306705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S, Szibor M, Warnecke H, Braun T (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9(5):420–432. doi:10.1016/j.stem.2011.08.013

    Article  PubMed  CAS  Google Scholar 

  9. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198. doi:10.1111/j.1749-6632.2009.05100.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. doi:10.1038/nature08899

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(Pt 22):4719–4729. doi:10.1242/jcs.03252

    Article  PubMed  CAS  Google Scholar 

  12. Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, Yelon D, Chi NC (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498(7455):497–501. doi:10.1038/nature12322

    Article  PubMed  CAS  Google Scholar 

  13. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605. doi:10.1038/nature08804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure from molecules to man (Part II). Cardiovasc pathol: Off J Soc Cardiovasc Pathol 14(2):49–60. doi:10.1016/j.carpath.2005.01.005

    Article  CAS  Google Scholar 

  15. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  16. Anversa P, Kajstura J, Rota M, Leri A (2013) Regenerating new heart with stem cells. J Clin Investig 123(1):62–70. doi:10.1172/JCI63068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Mazhari R, Hare JM (2012) Translational findings from cardiovascular stem cell research. Trends Cardiovasc Med 22(1):1–6. doi:10.1016/j.tcm.2012.05.017

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, Lee JC, Doran RM, Nikitin AY, Fleischmann BK, Kotlikoff MI (2012) c-kit + precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci USA 109(33):13380–13385. doi:10.1073/pnas.1208114109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Mesa A, Jessurun C, Hernandez A, Adam K, Brown D, Vaughn WK, Wilansky S (1999) Left ventricular diastolic function in normal human pregnancy. Circulation 99(4):511–517

    Article  PubMed  CAS  Google Scholar 

  20. Fagard R (2003) Athlete’s heart. Heart 89(12):1455–1461

    Article  PubMed Central  PubMed  Google Scholar 

  21. Milliken MC, Stray-Gundersen J, Peshock RM, Katz J, Mitchell JH (1988) Left ventricular mass as determined by magnetic resonance imaging in male endurance athletes. Am J Cardiol 62(4):301–305

    Article  PubMed  CAS  Google Scholar 

  22. Weeks KL, McMullen JR (2011) The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology 26(2):97–105. doi:10.1152/physiol.00043.2010

    Article  PubMed  CAS  Google Scholar 

  23. Mann N, Rosenzweig A (2012) Can exercise teach us how to treat heart disease? Circulation 126(22):2625–2635. doi:10.1161/CIRCULATIONAHA.111.060376

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hou J, Kang YJ (2012) Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 135(3):337–354. doi:10.1016/j.pharmthera.2012.06.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Kostin S, Hein S, Arnon E, Scholz D, Schaper J (2000) The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 5(3):271–280. doi:10.1023/A:1009813621103

    Article  PubMed  CAS  Google Scholar 

  26. Zardini P, Marino P, Golia G, Anselmi M, Castelli M (1993) Ventricular remodeling and infarct expansion. Am J Cardiol 72(19):98G–106G

    Article  PubMed  CAS  Google Scholar 

  27. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67(1):23–34

    Article  PubMed  CAS  Google Scholar 

  28. Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 111(7):887–893. doi:10.1161/01.CIR.0000155616.07901.35

    Article  PubMed  Google Scholar 

  29. Poller W, Kuhl U, Tschoepe C, Pauschinger M, Fechner H, Schultheiss HP (2005) Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J Mol Med 83(8):579–586. doi:10.1007/s00109-005-0664-2

    Article  PubMed  CAS  Google Scholar 

  30. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S (1997) Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 81(5):664–671

    Article  PubMed  CAS  Google Scholar 

  31. Horwitz MS, La Cava A, Fine C, Rodriguez E, Ilic A, Sarvetnick N (2000) Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat Med 6(6):693–697. doi:10.1038/76277

    Article  PubMed  CAS  Google Scholar 

  32. Shioi T, Matsumori A, Sasayama S (1996) Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 94(11):2930–2937

    Article  PubMed  CAS  Google Scholar 

  33. Seino Y, Ikeda U, Sekiguchi H, Morita M, Konishi K, Kasahara T, Shimada K (1995) Expression of leukocyte chemotactic cytokines in myocardial tissue. Cytokine 7(3):301–304. doi:10.1006/cyto.1995.0037

    Article  PubMed  CAS  Google Scholar 

  34. Apostolakis S, Lip GY, Shantsila E (2010) Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovasc Res 85(4):649–660. doi:10.1093/cvr/cvp327

    Article  PubMed  CAS  Google Scholar 

  35. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J pathol 170(3):818–829. doi:10.2353/ajpath.2007.060547

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, Gordillo G, Klenotic S, Orosz C, Parker-Thornburg J (1998) Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am J Pathol 152(1):101–111

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Heling A, Zimmermann R, Kostin S, Maeno Y, Hein S, Devaux B, Bauer E, Klovekorn WP, Schlepper M, Schaper W, Schaper J (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86(8):846–853

    Article  PubMed  CAS  Google Scholar 

  38. Poling J, Gajawada P, Lorchner H, Polyakova V, Szibor M, Bottger T, Warnecke H, Kubin T, Braun T (2012) The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and disease. Cell Cycle 11(3):439–445. doi:10.4161/cc.11.3.19024

    Article  PubMed  Google Scholar 

  39. Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marban E (2010) Dedifferentiation and proliferation of mammalian cardiomyocytes. PLOS One 5(9):e12559. doi:10.1371/journal.pone.0012559

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gwechenberger M, Moertl D, Pacher R, Huelsmann M (2004) Oncostatin-M in myocardial ischemia/reperfusion injury may regulate tissue repair. Croat Med J 45(2):149–157

    PubMed  Google Scholar 

  41. Ross J Jr (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83(3):1076–1083

    Article  PubMed  Google Scholar 

  42. Donath MY, Zapf J, Eppenberger-Eberhardt M, Froesch ER, Eppenberger HM (1994) Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc Natl Acad Sci USA 91(5):1686–1690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Ausma J, Schaart G, Thoné F, Shivalkar B, Flameng W, Depre C, Vanoverschelde J-L, Ramaekers F, Borgers M (1995) Chronic ischemic viable myocardium in man: aspects of dedifferentiation. Cardiovasc Pathol: Off J Soc Cardiovasc Pathol 4(1):29–37. http://dx.doi.org/10.1016/1054-8807(94)00028-P

  44. Dispersyn GD, Mesotten L, Meuris B, Maes A, Mortelmans L, Flameng W, Ramaekers F, Borgers M (2002) Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur Heart J 23(11):849–857. doi:10.1053/euhj.2001.2963

    Article  PubMed  CAS  Google Scholar 

  45. Ruzicka DL, Schwartz RJ (1988) Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J cell biol 107(6 Pt 2):2575–2586

    Article  PubMed  CAS  Google Scholar 

  46. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Investig 119(9):2634–2647. doi:10.1172/JCI38864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Harder BA, Hefti MA, Eppenberger HM, Schaub MC (1998) Differential protein localization in sarcomeric and nonsarcomeric contractile structures of cultured cardiomyocytes. J Struct Biol 122(1–2):162–175. doi:10.1006/jsbi.1998.3981

    Article  PubMed  CAS  Google Scholar 

  48. Suurmeijer AJ, Clement S, Francesconi A, Bocchi L, Angelini A, Van Veldhuisen DJ, Spagnoli LG, Gabbiani G, Orlandi A (2003) Alpha-actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J Pathol 199(3):387–397. doi:10.1002/path.1311

    Article  PubMed  CAS  Google Scholar 

  49. Kubin T, Vogel S, Wetzel J, Hein S, Pipp F, Herold J, Heil M, Kampmann A, Hehlgans S, von der Ahe D, Schaper W, Zimmermann R (2003) Porcine aortic endothelial cells show little effects on smooth muscle cells but are potent stimulators of cardiomyocyte growth. Mol Cell Biochem 242(1–2):39–45

    Article  PubMed  CAS  Google Scholar 

  50. Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC (1996) Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J Clin Investig 98(8):1737–1744. doi:10.1172/JCI118972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Person V, Kostin S, Suzuki K, Labeit S, Schaper J (2000) Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci 113(Pt 21):3851–3859

    PubMed  CAS  Google Scholar 

  52. Kubin T, Ando H, Scholz D, Bramlage P, Kostin S, van Veen A, Heling A, Hein S, Fischer S, Breier A, Schaper J, Schaper W (1999) Microvascular endothelial cells remodel cultured adult cardiomyocytes and increase their survival. Am J Physiol 276(6 Pt 2):H2179–H2187

    PubMed  CAS  Google Scholar 

  53. Kubin T, Yanagida M, Mori S, Hayashi Y, Gohda E, Yamamoto I (1989) Inhibition of DNA synthesis of adult rat hepatocytes in primary culture by dibutyrylcytidine 3’, 5’-cyclic monophosphate. Cell Biol Int Rep 13(11):907–917

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116(12):1413–1423. doi:10.1161/CIRCULATIONAHA.106.679589

    Article  PubMed  CAS  Google Scholar 

  55. Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C, Pedrozo Z, Munoz JP, Garcia L, Castro PF, Lavandero S (2012) Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 14(6):532–539. doi:10.1007/s11906-012-0305-4

    Article  PubMed  CAS  Google Scholar 

  56. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ (2009) Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res 81(3):420–428. doi:10.1093/cvr/cvn282

    PubMed  Google Scholar 

  57. Katz AM (1990) Future perspectives in basic science understanding of congestive heart failure. Am J Cardiol 66(4):468–471

    Article  PubMed  CAS  Google Scholar 

  58. O’Brien PJ, Gwathmey JK (1995) Myocardial Ca(2 +)- and ATP-cycling imbalances in end-stage dilated and ischemic cardiomyopathies. Cardiovasc Res 30(3):394–404

    Article  PubMed  Google Scholar 

  59. O’Brien PJ, O’Grady M, McCutcheon LJ, Shen H, Nowack L, Horne RD, Mirsalimi SM, Julian RJ, Grima EA, Moe GW et al (1992) Myocardial myoglobin deficiency in various animal models of congestive heart failure. J Mol Cell Cardiol 24(7):721–730

    Article  PubMed  Google Scholar 

  60. Weil J, Eschenhagen T, Magnussen O, Mittmann C, Orthey E, Scholz H, Schafer H, Scholtysik G (1997) Reduction of myocardial myoglobin in bovine dilated cardiomyopathy. J Mol Cell Cardiol 29(2):743–751. doi:10.1006/jmcc.1996.0318

    Article  PubMed  CAS  Google Scholar 

  61. Meeson AP, Radford N, Shelton JM, Mammen PP, DiMaio JM, Hutcheson K, Kong Y, Elterman J, Williams RS, Garry DJ (2001) Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ Res 88(7):713–720

    Article  PubMed  CAS  Google Scholar 

  62. Molojavyi A, Lindecke A, Raupach A, Moellendorf S, Kohrer K, Godecke A (2010) Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy. Physiol Genomics 41(2):137–145. doi:10.1152/physiolgenomics.90297.2008

    Article  PubMed  CAS  Google Scholar 

  63. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. doi:10.1016/j.cell.2012.01.021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813(7):1269–1278. doi:10.1016/j.bbamcr.2010.09.019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Taegtmeyer H, Razeghi P, Young ME (2002) Mitochondrial proteins in hypertrophy and atrophy: a transcript analysis in rat heart. Clin Exp Pharmacol Physiol 29(4):346–350

    Article  PubMed  CAS  Google Scholar 

  66. Lemieux H, Semsroth S, Antretter H, Hofer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43(12):1729–1738. doi:10.1016/j.biocel.2011.08.008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all members of the laboratory and specifically Sawa Kostin for continuous help, Jaakko Pohjoismäki (University of Eastern Finland, FIN) and Christopher Carroll (University of Helsinki, FIN) for critically reviewing this manuscript. Work in the laboratory was supported by the Max-Planck-Society, the DFG (Excellence Initiative “Cardiopulmonary System” and SFB/TRR 81), the University of Giessen-Marburg Lung Center (UGMLC) and the Cell and Gene Therapy Center (CGT) at the University of Frankfurt.

Conflict of interest

The authors declare that they have no conflicting commercial interests related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szibor, M., Pöling, J., Warnecke, H. et al. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell. Mol. Life Sci. 71, 1907–1916 (2014). https://doi.org/10.1007/s00018-013-1535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1535-6

Keywords

Navigation