Skip to main content
Log in

Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Receptor antagonist and knockout studies have demonstrated that blockade of signalling via nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) has antidepressant-like effects in mice submitted to the forced swimming test (FST). The aim of the present study was to explore further the antidepressant-like properties of the NOP antagonist UFP-101 in different species (mouse and rat) and using different assays [FST and tail suspension test (TST)], and to investigate the mechanism(s) involved in its actions.

UFP-101 (10 nmol i.c.v.) reduced immobility time of Swiss mice in the TST (mean±SEM) from 179±11 to 111±10 s. N/OFQ (1 nmol i.c.v.) was without effect per se, but fully prevented the effect of UFP-101. The spontaneous immobility time of NOP−/− CD1-C57BL/6J-129 mice in the TST was much lower than that of wild-type (NOP+/+) littermates (75±11 vs. 144±17 s) or of Swiss mice. UFP-101 (10 nmol i.c.v.) decreased immobility time (−65%) and increased climbing time (71%) in rats submitted to the FST. In rat brain slices, N/OFQ (100 nM) triggered robust K+-dependent hyperpolarizing currents in locus coeruleus and dorsal raphe neurons. UFP-101 (3 µM) fully prevented N/OFQ-induced currents, but was inactive per se. Fluoxetine, desipramine (both 30 mg/kg i.p.) and UFP-101 (10 nmol i.c.v.) reduced immobility time of mice in the FST. The serotonin synthesis inhibitor p-chlorophenylalanine methylester (PCPA, 4×100 mg/kg per day i.p.) prevented the antidepressant-like effects of fluoxetine and UFP-101 (but not desipramine), whereas N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, neurotoxic for noradrenergic neurons; 50 mg/kg i.p., 7 days beforehand), suppressed only the effect of desipramine. Neither pretreatment affected spontaneous immobility time per se.

Thus, UFP-101 exhibits pronounced antidepressant-like effects in different species and animal models, possibly by preventing the inhibitory effects of endogenous N/OFQ on brain monoaminergic (in particular serotonergic) neurotransmission. Participation of the N/OFQ-NOP receptor system in mood modulation sets new potential targets for antidepressant drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3A–C
Fig. 4

Similar content being viewed by others

References

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16:9–21

    Article  CAS  PubMed  Google Scholar 

  • Calo’ G, Guerrini R, Bigoni R, Rizzi A, Marzola G, Okawa H, Bianchi C, Lambert DG, Salvadori S, Regoli D (2000a) Characterization of [Nphe1]nociceptin(1–13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 129:1183–1193

    CAS  PubMed  Google Scholar 

  • Calo’ G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000b) Pharmacology of nociceptin and its receptor—a novel therapeutic target. Br J Pharmacol 129:1261–1283

    CAS  PubMed  Google Scholar 

  • Calo’ G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG, Salvadori S, Regoli D (2002) [Nphe1,Arg14,Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol 136:303–311

    CAS  PubMed  Google Scholar 

  • Connor M, Vaughan CW, Chieng B, Christie MJ (1996) Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 119:1614–1618

    CAS  PubMed  Google Scholar 

  • Cox BM, Chavkin C, Christie MJ, Civelli O, Evans C, Hamon MD, Hoellt V, Kieffer B, Kitchen I, McKnight AT, Meunier JC, Portoghese PS (2000) Opioid Receptors. In: Girdlestone D (eds) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media, London, pp 321–333

  • Cryan JF, Markou A, Lucki I (2002a) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Page ME, Lucki I (2002b) Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol 436:197–205

    Article  CAS  PubMed  Google Scholar 

  • Danysz W, Kostowski W, Kozak W, Hauptmann M (1986). On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression. Pol J Pharmacol Pharm 38:285–298

    CAS  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72

    Google Scholar 

  • Gavioli EC, Marzola G, Guerrini R, Bertorelli R, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo’ G (2003) Blockade of nociceptin/orphanin FQ-NOP receptor signaling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur J Neurosci 17:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Guerrini R, Calo’ G, Rizzi A, Bianchi C, Lazarus LH, Salvadori S, Temussi PA, Regoli D (1997) Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1–13)-peptide amide. J Med Chem 40:1789–1793

    CAS  PubMed  Google Scholar 

  • Hashiba E, Hirota K, Kudo T, Calo’ G, Guerrini R, Matsuki A (2003) Effects of nociceptin/orphanin FQ receptor ligands on blood pressure, heart rate and plasma catecholamine concentrations in guinea pigs. Naunyn Schmiedeberg’s Arch Pharmacol 367:342–347

    Google Scholar 

  • Jaim-Etcheverry G, Zieher LM (1980) DSP-4: a novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Res 188:513–523

    CAS  PubMed  Google Scholar 

  • Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)—a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188

    CAS  PubMed  Google Scholar 

  • Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16:355–357

    CAS  PubMed  Google Scholar 

  • Marti M, Stocchi S, Paganini F, Mela F, De Risi C, Calo’ G, Guerrini R, Barnes TA, Lambert DG, Beani L, Bianchi C, Morari M (2003) Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex. Br J Pharmacol 138:91–98

    Article  CAS  PubMed  Google Scholar 

  • McDonald J, Calo’ G, Guerrini R, Lambert DG (2003) UFP-101, a high affinity antagonist for the nociceptin/orphanin FQ receptor: radioligand and GTPgamma35S binding studies. Naunyn Schmiedeberg’s Arch Pharmacol 367:183–187

    Google Scholar 

  • Mela F, Marti M, Ulazzi L, Vaccari E, Zucchini S, Trapella C, Salvadori S, Beani L, Bianchi C, Morari M (2004) Pharmacological profile of nociceptin/orphanin FQ receptors regulating 5-hydroxytryptamine release in the mouse neocortex. Eur J Neurosci 19:1317–1324

    Article  PubMed  Google Scholar 

  • Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    CAS  PubMed  Google Scholar 

  • Mollereau C, Mouledous L (2000) Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides 21:907–917

    Article  CAS  PubMed  Google Scholar 

  • Nishi M, Houtani T, Noda Y, Mamiya T, Sato K, Doi T, Kuno J, Takeshima H, Nukada T, Nabeshima T, Yamashita T, Noda T, Sugimoto T (1997) Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. EMBO J 16:1858–1864

    CAS  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17:S1–S12

    Google Scholar 

  • Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Azuma T, Ichikawa D, Nambu H, Iguchi T, Iwasawa Y, Ohta H (2000) In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur J Pharmacol 402:45–53

    CAS  PubMed  Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 147:162–167

    Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M, Colombel MC, Baker GB (1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology (Berl) 138:1–8

    Google Scholar 

  • Redrobe JP, Calo’ G, Regoli D, Quirion R (2002) Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedeberg’s Arch Pharmacol 365:164–167

    Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science 270:792–794

    CAS  PubMed  Google Scholar 

  • Reinscheid RK, Nothacker H, Civelli O (2000) The orphanin FQ/nociceptin gene: structure, tissue distribution of expression and functional implications obtained from knockout mice. Peptides 21:901–906

    Article  CAS  PubMed  Google Scholar 

  • Rizzi A, Bigoni R, Marzola G, Guerrini R, Salvadori S, Regoli D, Calo’ G (2001) Characterization of the locomotor activity-inhibiting effect of nociceptin/orphanin FQ in mice. Naunyn Schmiedeberg’s Arch Pharmacol 363:161–165

    Google Scholar 

  • Sanders-Bush E, Bushing JA, Sulser F (1972) P-Chloroamphetamine inhibition of cerebral tryptophan hydroxylase. Biochem Pharmacol 21:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Morari M (2000) Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides 21:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11:659–671

    Google Scholar 

  • Vaughan CW, Christie MJ (1996) Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol 117:1609–1611

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the University of Ferrara (60% grant to GC), the Italian Ministry of University (2002 Cofin grant to DR), and the Brazilian Ministry of Education (CAPES, research fellowship grant to ECG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Calo’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavioli, E.C., Vaughan, C.W., Marzola, G. et al. Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn-Schmiedeberg's Arch Pharmacol 369, 547–553 (2004). https://doi.org/10.1007/s00210-004-0939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0939-0

Keywords

Navigation