Skip to main content
Log in

Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The mechanism of action of cannabidiol, one of the major constituents of cannabis, is not well understood but a noncompetitive interaction with mu opioid receptors has been suggested on the basis of saturation binding experiments. The aim of the present study was to examine whether cannabidiol is an allosteric modulator at this receptor, using kinetic binding studies, which are particularly sensitive for the measurement of allosteric interactions at G protein-coupled receptors. In addition, we studied whether such a mechanism also extends to the delta opioid receptor. For comparison, (-)-Δ9-tetrahydrocannabinol (THC; another major constituent of cannabis) and rimonabant (a cannabinoid CB1 receptor antagonist) were studied. In mu opioid receptor binding studies on rat cerebral cortex membrane homogenates, the agonist 3H-DAMGO bound to a homogeneous class of binding sites with a KD of 0.68±0.02 nM and a Bmax of 203±7 fmol/mg protein. The dissociation of 3H-DAMGO induced by naloxone 10 μM (half life time of 7±1 min) was accelerated by cannabidiol and THC (at 100 μM, each) by a factor of 12 and 2, respectively. The respective pEC50 values for a half-maximum elevation of the dissociation rate constant koff were 4.38 and 4.67; 3H-DAMGO dissociation was not affected by rimonabant 10 μM. In delta opioid receptor binding studies on rat cerebral cortex membrane homogenates, the antagonist 3H-naltrindole bound to a homogeneous class of binding sites with a KD of 0.24±0.02 nM and a Bmax of 352±22 fmol/mg protein. The dissociation of 3H-naltrindole induced by naltrindole 10 μM (half life time of 119±3 min) was accelerated by cannabidiol and THC (at 100 μM, each) by a factor of 2, each. The respective pEC50 values were 4.10 and 5.00; 3H-naltrindole dissociation was not affected by rimonabant 10 μM. The present study shows that cannabidiol is an allosteric modulator at mu and delta opioid receptors. This property is shared by THC but not by rimonabant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEBSF:

4-(2-aminoethyl)benzenesulfonyl fluoride

3H-DAMGO:

3H-Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol

3H-NTI:

3H-naltrindole

CBD:

(-)-cannabidiol

THC:

(-)-Δ9-tetrahydrocannabinol

References

  • Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI (1985) Characterization of [3H][2-D-penicillamine, 5-D-penicillamine]-enkephalin binding to δ opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108-15). Proc Natl Acad Sci USA 82:2543–2547

    Article  PubMed  CAS  Google Scholar 

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    Article  PubMed  CAS  Google Scholar 

  • Bornheim LM, Correia MA (1989) Effect of cannbidiol on cytochrome P-450 isoenzymes. Biochem Pharmacol 38:2789–2794

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    Article  PubMed  CAS  Google Scholar 

  • Consroe P, Martin A, Singh V (1981) Antiepileptic potential of cannabidiol analogs. J Clin Pharmacol 21:S428–S436

    Google Scholar 

  • Contreras PC, Tam L, Drower E, Rafferty MF (1993) [3H]naltrindole: a potent and selective ligand for labeling delta-opioid receptors. Brain Res 604:160–164

    Article  PubMed  CAS  Google Scholar 

  • Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacologists. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    PubMed  CAS  Google Scholar 

  • Guimaraes FS, De Aguiar JC, Mechoulam R, Breuer A (1994) Anxiolytic effect of cannabidiol derivatives in the elevated plus-maze. Gen Pharmacol 25:161–164

    PubMed  CAS  Google Scholar 

  • Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective. Proc Natl Acad Sci USA 95:8268–8273

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1993) Pharmacological analysis of drug-receptor interaction. Raven Press, New York

    Google Scholar 

  • Leppik RA, Lazareno S, Mynett A, Birdsall NJ (1998) Characterization of the allosteric interactions between antagonists and amiloride analogues at the human alpha2A-adrenergic receptor. Mol Pharmacol 53:916–925

    PubMed  CAS  Google Scholar 

  • Leppik RA, Mynett A, Lazareno S, Birdsall NJ (2000) Allosteric interactions between the antagonist prazosin and amiloride analogs at the human alpha1A-adrenergic receptor. Mol Pharmacol 57:436–445

    PubMed  CAS  Google Scholar 

  • Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97:9561–9566

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Consroe P, Kane VV, Shah V, Singh V, Lander N, Mechoulam R, Srebnik M (1987) Structure-anticonvulsant activity relationships of cannabidiol analogs. NIDA Res Monogr 79:48–58

    PubMed  CAS  Google Scholar 

  • Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 76:1307–1324

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG, Ross RA, Craib SA, Thomas A (2002) (-)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur J Pharmacol 456:99–106

    Article  PubMed  CAS  Google Scholar 

  • Potter LT, Ferrendelli CA, Hanchett HE, Holliefield MA, Lorenzi MV (1989) Tetrahydroaminoacridine and other allosteric antagonists of hippocampal M1 muscarine receptors. Mol Pharmacol 35:652–660

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, Ferrara P, Soubrie P, Breliere JC, Le Fur G (1994) SR 141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    Article  PubMed  CAS  Google Scholar 

  • Rog DJ, Nurmikko TJ, Friede T, Young CA (2005) Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65:812–819

    Article  PubMed  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MD, Srivastava BI, Brouhard B (1998) Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 40:179–185

    Article  PubMed  CAS  Google Scholar 

  • Tränkle C, Weyand O, Voigtländer U, Mynett A, Lazareno S, Birdsall NJ, Mohr K (2003) Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol 64:180–190

    Article  PubMed  Google Scholar 

  • Ulibarri I, Garcia-Sevilla JA, Ugedo L (1987) Modulation of brain α2-adrenoceptor and μ-opioid receptor densities during morphine dependence and spontaneous withdrawal in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 336:530–537

    Article  CAS  Google Scholar 

  • Vaysse PJJ, Gardener EL, Zukin RS (1987) Modulation of rat brain opioid receptors by cannabinoids. J Pharm Exp Ther 241:534–539

    CAS  Google Scholar 

  • Zhao GM, Qian X, Schiller PW, Szeto HH (2003) Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at μ, δ and κ opioid receptors. J Pharm Exp Ther 307:947–954

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft (Schl 266/5-5 and Graduiertenkolleg 246 TP 01). We are also indebted to Mrs. P. Zeidler for her skilled technical assistance and to GW Pharmaceuticals and Sanofi-Aventis for gifts of drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kathmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathmann, M., Flau, K., Redmer, A. et al. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmied Arch Pharmacol 372, 354–361 (2006). https://doi.org/10.1007/s00210-006-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0033-x

Keywords

Navigation