Skip to main content
Log in

Adenylyl cyclase type 6 overexpression selectively enhances β-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor β and inhibited by agents that elevate 3′,5′-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for β-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5′-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of β-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

βAR:

β-Adrenergic receptor

cAMP:

3′,5′-Cyclic adenosine monophosphate

Fsk:

Forskolin

Iso:

Isoproterenol PKA

PGE2 :

Prostaglandin E2

IPR:

Prostanoid IP receptor

References

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Block JA, Sequeira W (2001) Raynaud’s phenomenon. Lancet 357(9273):2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Brunton LL, Hayes JS et al (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cycl Nucleotide Res 14:391–397

    CAS  Google Scholar 

  • Bundey RA, Insel PA (2006) Adenylyl cyclase 6 overexpression decreases the permeability of endothelial monolayers via preferential enhancement of prostacyclin receptor function. Mol Pharmacol 70(5):1700–1707

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375(Pt 3):517–529

    Article  PubMed  CAS  Google Scholar 

  • Davare MA, Avdonin V et al (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293(5527):98–101

    Article  PubMed  CAS  Google Scholar 

  • Eghbali M, Weber KT (1990) Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol Cell Biochem 96(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Smith KE et al (2000) Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 275(34):26530–26537

    Article  PubMed  CAS  Google Scholar 

  • Foster LJ, De Hoog CL et al (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100(10):5813–5818

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Ping P et al (1998) Increased expression of adenylyl cyclase type VI proportionately increases beta-adrenergic receptorstimulated production of cAMP in neonatal rat cardiac myocytes. Proc Natl Acad Sci USA 95(3):1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Gros R, Ding Q et al (2006) Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization. Circ Res 99(8):845–852

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson AB, Brunton LL (2000) Beta -adrenergic stimulation of rat cardiac fibroblasts enhances induction of nitric-oxide synthase by interleukin-1beta via message stabilization. Mol Pharmacol 58(6):1470–1478

    PubMed  CAS  Google Scholar 

  • Hasse A, Nilius SM et al (2003) Long-term-desensitization of prostacyclin receptors is independent of the C-terminal tail. Biochem Pharmacol 65(12):1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ostrom RS et al (2004) cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol 286(5):C1089–C1099

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Sun SQ et al (2006) cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 70(6):1992–2003

    Article  PubMed  CAS  Google Scholar 

  • McAdam BF, Catella-Lawson F et al (1999) Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96(1):272–277

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Sugimoto Y et al (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226

    PubMed  CAS  Google Scholar 

  • Nasrallah R, Hebert RL (2005) Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 289(2):F235–246

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: Implications for molecular pharmacology. Br J Pharmacol 143(2):235–245

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C et al (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275(16):11735–11739

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Post SR et al (2000) Stoichiometry and compartmentation in G Protein-coupled receptor signaling: implications for therapeutic interventions involving Gs. J Pharmacol Exp Ther 294(2):407–412

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Violin JD et al (2000) Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 57(5):1075–1079

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C et al (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276(45):42063–42069

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Liu X et al (2002) Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol Pharmacol 62(5):983–992

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Naugle JE et al (2003) Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq–Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem 278(27):24461–24468

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Woodman SE et al (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467

    Article  PubMed  CAS  Google Scholar 

  • Rubin LJ, Groves BM et al (1982) Prostacyclin-induced acute pulmonary vasodilation in primary pulmonary hypertension. Circulation 66(2):334–338

    PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X et al (2000) Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275(52):41447–41457

    Article  PubMed  CAS  Google Scholar 

  • Schwencke C, Yamamoto M et al (1999) Compartmentation of cyclic adenosine 3′,5′-monophosphate signaling in caveolae. Mol Endocrinol 13(7):1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW, Smart EJ et al (1996) Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 271(11):6518–6522

    Article  PubMed  CAS  Google Scholar 

  • Smith KE, Gu C et al (2002) Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca2+ entry. J Biol Chem 277(8):6025–6031

    Article  PubMed  CAS  Google Scholar 

  • Song SK, Li S et al (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271(16):9690–9697

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of g protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  PubMed  CAS  Google Scholar 

  • Swaney JS, Roth DM et al (2005) Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci USA 102(2):437–442

    Article  PubMed  CAS  Google Scholar 

  • Weber KT, Sun Y et al (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26(3):279–292

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Gallagher AM et al (1997) Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 30(5):1047–1053

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Fengying Li for her technical assistance. This work was supported by grant number HL071781 from the National Institutes of Health (RSO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rennolds S. Ostrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Thangavel, M., Sun, S.Q. et al. Adenylyl cyclase type 6 overexpression selectively enhances β-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts. Naunyn-Schmied Arch Pharmacol 377, 359–369 (2008). https://doi.org/10.1007/s00210-007-0196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0196-0

Keywords

Navigation