Skip to main content
Log in

Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Knowledge about the metabolism of anti-parasitic drugs (APDs) will be helpful in ongoing efforts to optimise dosage recommendations in clinical practise. This study was performed to further identify the cytochrome P 450 (CYP) enzymes that metabolise major APDs and evaluate the possibility of predicting in vivo drug clearances from in vitro data.

Methods

In vitro systems, rat and human liver microsomes (RLM, HLM) and recombinant cytochrome P 450 (rCYP), were used to determine the intrinsic clearance (CLint) and identify responsible CYPs and their relative contribution in the metabolism of 15 commonly used APDs.

Results and discussion

CLint determined in RLM and HLM showed low (r2=0.50) but significant (P<0.01) correlation. The CLint values were scaled to predict in vivo hepatic clearance (CLH) using the 'venous equilibrium model'. The number of compounds with in vivo human CL data after intravenous administration was low (n=8), and the range of CL values covered by these compounds was not appropriate for a reasonable quantitative in vitro–in vivo correlation analysis. Using the CLH predicted from the in vitro data, the compounds could be classified into three different categories: high-clearance drugs (>70% liver blood flow; amodiaquine, praziquantel, albendazole, thiabendazole), low-clearance drugs (<30% liver blood flow; chloroquine, dapsone, diethylcarbamazine, pentamidine, primaquine, pyrantel, pyrimethamine, tinidazole) and intermediate clearance drugs (artemisinin, artesunate, quinine). With the exception of artemisinin, which is a high clearance drug in vivo, all other compounds were classified using in vitro data in agreement with in vivo observations. We identified hepatic CYP enzymes responsible for metabolism of some compounds (praziquantel—1A2, 2C19, 3A4; primaquine—1A2, 3A4; chloroquine—2C8, 2D6, 3A4; artesunate—2A6; pyrantel—2D6). For the other compounds, we confirmed the role of previously reported CYPs for their metabolism and identified other CYPs involved which had not been reported before.

Conclusion

Our results show that it is possible to make in vitro–in vivo predictions of high, intermediate and low CLint drug categories. The identified CYPs for some of the drugs provide a basis for how these drugs are expected to behave pharmacokinetically and help in predicting drug–drug interactions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1.
Fig 2.
Fig 3.

Similar content being viewed by others

References

  1. Masimirembwa C, Thompson R, Andersson T (2001) In vitro high throughput screening of compounds for favourable metabolic properties in drug discovery. Comb Chem High Throughput Screen 4:245–263

    CAS  PubMed  Google Scholar 

  2. Davit B, Reynolds K, Yuan R, Ajayi F, Conner D, Fadiran E, Gillespie B, Sahajwalla C, Huang S, Lesko L (1999) FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 39:899–910

    Article  CAS  PubMed  Google Scholar 

  3. White N (1999) Antimalarial drug resistance and combination chemotherapy. Phil Trans R Soc London 354:739–749

    Article  CAS  Google Scholar 

  4. Krishma S, White N (1996) Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 4:263–299

    Google Scholar 

  5. Rodriques D (1999) Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 57:465–480

    CAS  PubMed  Google Scholar 

  6. Störmer E, von Moltke L, Greenblatt D (2000) Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: a comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism. J Pharmacol Exp Ther 295:793–801

    Google Scholar 

  7. Bertz R, Granneman G (1997) Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32:210–256

    Google Scholar 

  8. Bapiro T, Egnell A, Hasler J, Masimirembwa C (2001) Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos 29:30–35

    CAS  PubMed  Google Scholar 

  9. Bapiro T, Andersson T, Otter C, Hasler J, Masimirembwa C (2002) Cytochrome P450 1A1/2 induction by antiparasitic drugs: dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HeG2 cells. Eur J Clin Pharmacol 58:537–542

    Article  CAS  PubMed  Google Scholar 

  10. Houston J (1994) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47:1469–1479

    Article  CAS  PubMed  Google Scholar 

  11. Obach R (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27:1350–1359

    CAS  PubMed  Google Scholar 

  12. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y (1998) Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Ann Rev Pharmacol Toxicol 38:461–499

    Article  CAS  Google Scholar 

  13. Houston J, Carlile D (1997) Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices. Drug Metab Rev 29:891–922

    CAS  PubMed  Google Scholar 

  14. Crespi C (1995) Xenobiotic-metabolizing human cells as tools for pharmacological and toxicological research. Adv Drug Res 26:179–235

    CAS  Google Scholar 

  15. Nakajima M, Nakamara S, Tokudome S, Shimada N, Yamazaki H, Yokoi T (1999) Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 27:1381–1391

    CAS  PubMed  Google Scholar 

  16. Obach R, Baxter J, Liston T, Silber B, Jones B, MacIntyre F, Rance D, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283:46–58

    CAS  PubMed  Google Scholar 

  17. White N, Looareesuwan S, Edwards G, Phillips R, Karbwang J, Nicholl D, Bunch C, Warrell D (1987) Pharmacokinetics of intravenous amodiaquine. Br J Clin Pharmacol 23:127–135

    CAS  PubMed  Google Scholar 

  18. Li X, Björkman A, Andersson T, Ridderström M, Masimirembwa C (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme specific probe substrate. J Pharmacol Exp Ther 300:399–407

    Article  CAS  PubMed  Google Scholar 

  19. Davis T, Phuong H, Ilett K, Hung N, Batty K, Phuong V, Powell S, Thien H, Binh T (2001) Pharmacokinetics and pharmacodynamics of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother 45:181–186

    Article  CAS  PubMed  Google Scholar 

  20. Walker O, Salako L, Alvan G, Ericsson O, Sjoqvist F (1987) The disposition of chloroquine in healthy Nigerians after single intravenous and oral doses. Br J Clin Pharmacol 23:295–301

    CAS  PubMed  Google Scholar 

  21. Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Clin Pharmacokinet 31:257–274

    CAS  PubMed  Google Scholar 

  22. Pieters F, Zuidema J (1987) The absolute oral bioavailability of dapsone in dogs and humans. Int J Clin Pharmacol Ther Toxicol 25:396–400

    CAS  PubMed  Google Scholar 

  23. Mitra A, Thummel K, Kalhorn T, Kharasch E, Unadkat J, Slattery J (1995) Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther 58:556–566

    CAS  PubMed  Google Scholar 

  24. Bronner U, Gustafsson L, Doua F, Ericsson O, Miezan T, Rais M, Rombo L (1995) Pharmacokinetics and adverse reactions after a single dose of pentamidine in patients with Trypanosoma gambiense sleeping sickness. Br J Clin Pharmacol 39:289–295

    CAS  PubMed  Google Scholar 

  25. Mihaly G, Ward S, Edwards G, Nicholl D, Orme M, Breckenridge A (1985) Pharmacokinetics of primaquine in man. I. Studies of the absolute bioavailability and effects of dose size. Br J Clin Pharmacol 19:745–750

    CAS  PubMed  Google Scholar 

  26. Constantino L, Paixao P, Moreira R, Portela M, Do Rosario V, Iley J (1999) Metabolism of primaquine by liver homogenate fractions. Evidence for monoamine oxidase and cytochrome P450 involvement in the oxidative deamination of primaquine to carboxyprimaquine. Exp Toxicol Pathol 51:299–303

    CAS  PubMed  Google Scholar 

  27. Karbwang J, Davis T, Looareesuwan S, Molunto P, Bunnag D, White N (1993) A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. Br J Clin Pharmacol 35:265-271

    CAS  PubMed  Google Scholar 

  28. Zhao X, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T (1996) Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human liver microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther 279:1327–1334

    Google Scholar 

  29. Robson R, Bailey R, Sharman J (1984) Tinidazole pharmacokinetics in severe renal failure. Clin Pharmacokinet 9:88–94

    CAS  PubMed  Google Scholar 

  30. Giao P, Vries P (2001) Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet 40:343–373

    CAS  PubMed  Google Scholar 

  31. Lee I, Hufford C (1990) Metabolism of antimalarial sesquiterpene lactones. Pharmacol Ther 48:345–355

    Article  CAS  PubMed  Google Scholar 

  32. Projean D, Baune B, Farinotti R, Flinois J, Beaune P, Taburet A, Ducharme J (2003) In vitro metabolism of chloroquine: Identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalysing N-desethylchloroquine formation. Drug Metab Dispos 31:748–754

    Article  PubMed  Google Scholar 

  33. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green C, Tyson C, Sugiyama Y (1997) Prediction of in vitro drug metabolism in the human liver from in vitro metabolims data. Pharmacol Ther 73:147–171

    Article  CAS  PubMed  Google Scholar 

  34. Carlile D, Hakooz N, Bayliss M, Houston J (1999) Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br J Clin Pharmacol 47:625–635

    Article  CAS  PubMed  Google Scholar 

  35. Clarke S, Jeffrey P (2001) Utility of metabolic stability screening: comparison of in vitro and in vivo clearance. Xenobiotica 31:591–598

    Article  CAS  PubMed  Google Scholar 

  36. May D, Porter J, Uetrecht J, Wilkinson G, Branch R (1990) The contribution of N-hydroxylation and acetylation to dapsone pharmacokinetics in normal subjects. Clin Pharmacol Ther 48:619–627

    Google Scholar 

  37. Svensson U, Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528–535

    Article  CAS  PubMed  Google Scholar 

  38. Coulet M, Dacasto M, Eeckhoutte C, Larrieu G, Sutra J, Alvinerie M, Mace K, Pfeifer A, Galtier P (1998) Identification of human and rabbit cytochromes P450 1A2 as major isoforms involved in thiabendazole 5-hydroxylation. Fundam Clin Pharmacol 12:225–235

    CAS  PubMed  Google Scholar 

  39. Rawden H, Kokwaro G, Ward S, Edwards G (2000) Relative contribution of cytochrome P450 and flavin-containing monooxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol 49:313–322

    CAS  PubMed  Google Scholar 

  40. Winter H, Wang Y, Unadkat J (2000) CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone. Drug Metab Dispos 28:865–868

    CAS  PubMed  Google Scholar 

  41. Bronner U (1994) Pharmacokinetics of pentamidine: focus on the treatment of trypanosoma gambiense sleeping sickness. Thesis, Karolinska Institute, Huddinge University Hospital, Stockholm

    Google Scholar 

  42. Ducharme J, Baune B, Taburet A, Farinotti R (1996) Chloroquine metabolism in human liver microsomes. Exp Toxic Pathol 48:345

    Google Scholar 

  43. Jewell H, Maggs J, Harrison A, O'Neill P, Ruscoe J, Park B (1995) Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 25:199–217

    CAS  PubMed  Google Scholar 

  44. Na-Bangchang K, Vanijanonta S, Karbwang J (1995) Plasma concentrations of praziquantel during the therapy of neurocysticercosis with praziquantel, in the presence of antiepileptics and dexamethasone. Southeast Asian J Trop Med Public Health 26:120–123

    CAS  Google Scholar 

  45. Vazquez M, Jung H, Sotelo J (1987) Plasma levels of praziquantel decrease when dexamethosone is given simultaneously. Neurology 37:1561–1562

    CAS  PubMed  Google Scholar 

  46. Diekmann H, Schneidereit M, Overbosch D (1989) Inhibitory effects of cimetidine, ketoconazole and miconazole on the metabolism of praziquantel. Acta Leidensia 57:217–228

    CAS  PubMed  Google Scholar 

  47. Jung H, Medina R, Castro N, Corona T, Sotelo J (1997) Pharmacokinetic study of praziquantel administered alone and in combination with cimetidine in a single-day therapeutic regimen. Antimicrob Agents Chemother 41:1256–1259

    CAS  PubMed  Google Scholar 

  48. Albengres E, Tillement J (1992) Cyclosporin and ketoconazole, drug interaction or therapeutic association? Int J Clin Pharmacol Therapy Toxicol 30:555–570

    Google Scholar 

  49. Ilondu N, Orisakwe O, Ofoefule S, Afonne O, Obi E, Chilaka K, Orish C (2000) Pharmacokinetics of diethylcarbamazine: prediction by concentration in saliva. Biol Pharm Bull 23:443–445

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Dr. Xue-Qing Li is a recipient of the Wenner-Gren Foundation postdoctoral fellowship (Stockholm, Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collen M. Masimirembwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XQ., Björkman, A., Andersson, T.B. et al. Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59, 429–442 (2003). https://doi.org/10.1007/s00228-003-0636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-003-0636-9

Keywords

Navigation