Skip to main content
Log in

Contrasting Effects of Cd2+ and Co2+ on the Blocking/Unblocking of Human Cav3 Channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akaike N., Kanaide H., Kuga T., Nakamura M., Sadoshima J., Tomoike H. 1989. Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture. J. Physiol. 416:141–160

    CAS  PubMed  Google Scholar 

  • Akaike N., Kostyuk P.O., Osipchuk Y.V. 1989. Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J. Physiol. 412:181–195

    CAS  PubMed  Google Scholar 

  • Arnoult C., Villaz M., Florman H.M. 1998. Pharmacological properties of the T-type Ca2+ current of mouse spermatogenic cells. Mol. Pharmacol. 53:1104–1111

    CAS  PubMed  Google Scholar 

  • Beedle A.M., Hamid J., Zamponi G.W. 2002. Inhibition of transiently expressed low- and high-voltage-activated calcium channels by trivalent metal cations. J. Membrane Biol. 187:225–238

    Article  CAS  Google Scholar 

  • Biagi B.A., Enyeart J.J. 1990. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am. J. Physiol 259:C515–C520

    CAS  PubMed  Google Scholar 

  • Bootman M.D., Lipp P., Berridge M.J. 2001. The organisation and functions of local Ca2+ signals. J. Cell Sci. 114:2213–2222

    CAS  PubMed  Google Scholar 

  • Brown A.M., Tsuda Y., Wilson D.L. 1983. A description of activation and conduction in calcium channels based on tail and turn-on current measurements in the snail. J. Physiol. 344:549–583

    CAS  PubMed  Google Scholar 

  • Castelli L., Tanzi F., Taglietti V., Magistretti J. 2003. Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J. Membrane Biol. 195:121–136

    Article  CAS  Google Scholar 

  • Chow R.H. 1991. Cadmium block of squid calcium currents. Macroscopic data and a kinetic model. J. Gen. Physiol 98:751–770

    Article  CAS  PubMed  Google Scholar 

  • Cribbs L.L., Gomora J.C., Daud A.N., Lee J.H., Perez-Reyes E. 2000. Molecular cloning and functional expression of Ca(v)3.1c, a T-type calcium channel from human brain. FEBS Lett. 466:54–58

    Article  CAS  PubMed  Google Scholar 

  • Cribbs L.L., Lee J.H., Yang J., Satin J., Zhang Y., Daud A., Barclay J., Williamson M.P., Fox M., Rees M., Perez-Reyes E. 1998. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ. Res. 83:103–109

    CAS  PubMed  Google Scholar 

  • Elinder F., Arhem P. 2003. Metal ion effects on ion channel gating. Q. Rev. Biophys. 36:373–427

    CAS  PubMed  Google Scholar 

  • Frazier C.J., Serrano J.R., George E.G., Yu X., Viswanathan A., Perez-Reyes E., Jones S.W. 2001. Gating kinetics of the alpha1I T-type calcium channel. J. Gen. Physiol. 118:457–470

    Article  CAS  PubMed  Google Scholar 

  • Gomora J.C., Daud A.N., Weiergraber M., Perez-Reyes E. 2001. Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol. Pharmacol. 60:1121–1132

    CAS  PubMed  Google Scholar 

  • Gomora J.C., Murbartian J., Arias J.M., Lee J.H., Perez-Reyes E. 2002. Cloning and expression of the human T-type channel Ca(v)3.3: insights into prepulse facilitation. Biophys. J. 83:229–241

    CAS  PubMed  Google Scholar 

  • Hagiwara S., Takahashi K. 1967. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J. Gen. Physiol. 50:583–601

    Article  CAS  PubMed  Google Scholar 

  • Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfludgers Arch. 391:85–100

    Article  CAS  Google Scholar 

  • Herrington J., Lingle C.J. 1992. Kinetic and pharmacological properties of low voltage-activated Ca2+ current in rat clonal (GH3) pituitary cells. J. Neurophysiol. 68:213–232

    CAS  PubMed  Google Scholar 

  • Jeong S.W., Park E.G., Park J.Y., Lee J.W., Lee J.H. 2003. Divalent metals differentially block cloned T-type calcium channels. Neuroreport 14:1537–1540

    CAS  PubMed  Google Scholar 

  • Jones S.W., Marks T.N. 1989. Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology. J. Gen. PhysioL. 94:151–167

    CAS  PubMed  Google Scholar 

  • Kaneda M., Akaike N. 1989. The low-threshold Ca current in isolated amygdaloid neurons in the rat. Brain Res. 497:187–190

    Article  CAS  PubMed  Google Scholar 

  • Kim M.S., Morii T., Sun L.X., Imoto K., Mori Y. 1993. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318:145–148

    Article  CAS  PubMed  Google Scholar 

  • Kim D., Song I., Keum S., Lee T., Jeong M.J., Kim S.S., McEnery M.W., Shin H.S. 2001. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha (1G) T-type Ca2+ channels. Neuron 31:35–45

    Article  CAS  PubMed  Google Scholar 

  • Lacinova L., Klugbauer N., Hofmann F. 2000. Regulation of the calcium channel alpha (1G) subunit by divalent cations and organic blockers. Neuropharmacology 39:1254–1266

    CAS  PubMed  Google Scholar 

  • Lansman J.B., Hess P., Tsien R.W. 1986. Blockade of current through single Cd2+, Mg2+, and Ca2+ Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol 88:321–347

    Article  CAS  PubMed  Google Scholar 

  • Lee J.H., Daud A.N., Cribbs L.L., Lacerda A.E., Pereverzev A., Klockner U., Schneider T., Perez-Reyes E. 1999a. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19:1912–1921

    CAS  Google Scholar 

  • Lee J.H., Gomora J.C., Cribbs L.L., Perez-Reyes E. 1999b. Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J. 77:3034–3042

    CAS  Google Scholar 

  • Magistretti J., Brevi S., de Curtis M. 2001. Ni2+ slows the activation kinetics of high-voltage-activated Ca2+ currents in cortical neurons: evidence for a mechanism of action independent of channel-pore block. J. Membrane Biol. 179:243–262

    Article  CAS  Google Scholar 

  • Marty A., Neher. E. 1995. Tight-seal whole-cell recording. In: Sakmann B., Neher E. (eds) Single Channel Recording. Plenum Press, New York

  • McFarlane M.B., Gilly W.F. 1998. State-dependent nickel block of a high-voltage-activated neuronal calcium channel. J. Neurophysiol. 80:1678–1685

    CAS  PubMed  Google Scholar 

  • Mitterdorfer J., Grabner M., Kraus R.L., Hering S., Prinz H., Glossmann H., Striessnig J. 1998. Molecular basis of drug interaction with L-type channels. J. Bioenerg. Biomembr. 30:319–334

    Article  CAS  PubMed  Google Scholar 

  • Mlinar B., Enyeart J.J. 1993a. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J. Physiol. 469:639–652

    CAS  Google Scholar 

  • Nachshen D.A. 1984. Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca influx by multivalent metal cations. J. Gen. Physiol. 83:941–967

    Article  CAS  PubMed  Google Scholar 

  • Obejero-Paz C.A., Gray I.P., Jones S.W. 2004. Y3+ Block Remonstrates an intracellular activation gate for the {alpha} 1G T-type Ca2+ channel. J. Gen. Physiol. 124:631–640

    Article  CAS  PubMed  Google Scholar 

  • Perchenet L., Benardeau A., Ertel E.A. 2000. Pharmacological properties of Ca(V)3.2, a low voltage-activated Ca2+ channel cloned from human heart. Naunyn Schmiedebergs Arch. Pharmacol. 361:590–599

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes E. 2003. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 83:117–161

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E., Cribbs L.L., Daud A., Lacerda A.E., Barclay J., Williamson M.P., Fox M., Rees M., Lee J.H. 1998. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    Article  CAS  PubMed  Google Scholar 

  • Schrier A.D., Wang H., Talley E.M., Perez-Reyes E., Barrett P.Q. 2001. alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am. J. Physiol 280:C265–C272

    CAS  Google Scholar 

  • Serrano J.R., Dashti S.R., Perez-Reyes E., Jones S.W. 2000. Mg2+ block unmasks Ca2+ Ba2+ selectively of alpha1G T-type calcium channels. Biophys. J. 79:3052–3062

    CAS  PubMed  Google Scholar 

  • Swandulla D., Armstrong C.M. 1989. Calcium channel block by cadmium in chicken sensory neurons. Proc. Natl. Acad. Sci. USA 86:1736–1740

    CAS  PubMed  Google Scholar 

  • Takahashi K., Akaike N. 1991. Calcium antagonist effects on low-threshold (T-type) calcium current in rat isolated hippocampal CA1 pyramidal neurons. J. Pharmacol. Exp. Ther. 256:169–175

    CAS  PubMed  Google Scholar 

  • Talley E.M., Cribbs L.L., Lee J.H., Daud A., Perez-Reyes E., Bayliss D.A. 1999. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J. Neurosci. 19:1895–1911

    CAS  PubMed  Google Scholar 

  • Tang S., Mikala G., Bahinski A., Yatani A., Varadi G., Schwartz A. 1993. Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J. Biol. Chem. 268:13026–13029

    CAS  PubMed  Google Scholar 

  • Thevenod F., Jones S.W. 1992. Cadmium block of calcium current in frog sympathetic neurons. Biophys. J. 63:162–168

    CAS  PubMed  Google Scholar 

  • Todorovic S.M., Jevtovic-Todorovic V., Mennerick S., Perez-Reyes E., Zorumski C.F. 2001a. Ca(v)3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol. 60:603–610

    CAS  Google Scholar 

  • Todorovic S.M., Jevtovic-Todorovic V., Meyenburg A., Mennerick S., Perez-Reyes E., Romano C., Olney J.W., Zorumski C.F. 2001b. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31:75–85

    Article  CAS  Google Scholar 

  • Wakamori M., Strobeck M., Niidome T., Teramoto T., Imoto K., Mori Y. 1998. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. J. Neurophysiol. 79:622–634

    CAS  PubMed  Google Scholar 

  • Wu J.Y., Lipsius S.L. 1990. Effects of extracellular Mg2+ on T- and L-type Ca2+ currents in single atrial myocytes. Am. J. Physiol. 259:H1842–H1850

    CAS  PubMed  Google Scholar 

  • Yang J., Ellinor P.T., Sather W.A., Zhang J.F., Tsien R.W. 1993. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  CAS  PubMed  Google Scholar 

  • Zamponi G.W., Bourinet E., Snutch T.P. 1996. Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J. Membrane Biol. 151:77–90

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are deeply grateful to Dr. Edward Perez-Reyes (University of Virginia, Charlottesville, VA) for his enormous contribution providing cell lines stably expressing Cav3 channels, and his comments on the manuscript. This work was supported by the following grants: CONACyT (Mexico) I37976-B and J-40693-Q to J.C. Gomora, and DGAPA-UNAM (Mexico) IN201602 to J.C. Gomora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C. Gomora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, D., Bartolo, R., Delgadillo, D. et al. Contrasting Effects of Cd2+ and Co2+ on the Blocking/Unblocking of Human Cav3 Channels. J Membrane Biol 207, 91–105 (2005). https://doi.org/10.1007/s00232-005-0804-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0804-1

Keywords

Navigation