Skip to main content
Log in

K+ Channels in Apoptosis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K+ across the cell membrane and that of the mitochondria via integral K+-permeable channels. We describe the different types of K+ channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K+ channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aguilar-Bryan L., Nichols C.G., Wechsler S.W., Clement J.P., Boyd A.E., González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D.A. 1995. Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    CAS  PubMed  Google Scholar 

  • Aickin C.C., Brading A.F. 1982. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J. Physiol. 326:139–154

    CAS  PubMed  Google Scholar 

  • Akao M., Ohler A., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88:1267–1275

    CAS  PubMed  Google Scholar 

  • Allbritton N.L., Verret C.R., Wolley R.C., Eisen H.N. 1988. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J. Exp. Med. 167:514–527

    CAS  PubMed  Google Scholar 

  • Ashcroft F.M. 2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115:2047–2058

    CAS  PubMed  Google Scholar 

  • Ashcroft F.M., Kakei M. 1989. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J. Physiol. 416:349–367

    CAS  PubMed  Google Scholar 

  • Bähring R., Milligan C.J., Vardanyan V., Engeland B., Young B.A., Dannenberg J., Waldschutz R., Edwards J.P., Wray D., Pongs O. 2001. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvb subunits. J. Biol. Chem. 276:22923–22929

    PubMed  Google Scholar 

  • Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. 1998. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    CAS  PubMed  Google Scholar 

  • Beech D.J., Zhang H., Nakao K., Bolton T.B. 1993. K-channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br. J. Pharmacol. 110:573–582

    CAS  PubMed  Google Scholar 

  • Bock J., Szabó I., Jekle A., Gulbins E. 2002. Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem. Biophys. Res. Commun. 295:526–531

    CAS  PubMed  Google Scholar 

  • Bonev A.D., Nelson M.T. 1993. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am. J. Physiol. 264:C1190–C1200

    CAS  PubMed  Google Scholar 

  • Bortner C.D., Cidlowski J.A. 1999. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274:21953–21962

    CAS  PubMed  Google Scholar 

  • Bortner C.D., Gómez-Angelats M., Cidlowski J.A. 2001. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J. Biol. Chem. 276:4304–4314

    CAS  PubMed  Google Scholar 

  • Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 272:32436–32442

    CAS  PubMed  Google Scholar 

  • Brenner R., Jegla T.J., Wickenden A., Liu Y., Aldrich R.W. 2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–6461

    CAS  PubMed  Google Scholar 

  • Brevnova E.E., Platoshyn O., Zhang S., Yuan J.X.-J. 2004. Overexpression of human KCNA5 increases I K(V) and enhances apoptosis. Am. J. Physiol. 287:C715–C722

    CAS  Google Scholar 

  • Brustovetsky T., Shalbuyeva N., Brustovetsky N. 2005. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J. Physiol. 568:47–59

    CAS  PubMed  Google Scholar 

  • Buckler K.J., Williams B.A., Honoré E. 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525:135–142

    CAS  PubMed  Google Scholar 

  • Butler A., Tsunoda S., McCobb D.P., Wei A., Salkoff L. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224

    CAS  PubMed  Google Scholar 

  • Butler A., Wei A.G., Baker K., Salkoff L. 1989. A family of putative potassium channel genes in Drosophila. Science 243:943–947

    CAS  PubMed  Google Scholar 

  • Cain K., Langlais C., Sun X.-M., Brown D.G., Cohen G.M. 2001. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276:41985–41990

    CAS  PubMed  Google Scholar 

  • Caley A.J., Gruss M., Franks N.P. 2005. The effects of hypoxia on the modulation of human TREK-1 potassium channels. J. Physiol. 562:205–212

    CAS  PubMed  Google Scholar 

  • Cao C.-M., Xia Q., Gao Q., Chen M., Wong T.-M. 2005. Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J. Pharmacol. Exp. Ther. 312:644–650

    CAS  PubMed  Google Scholar 

  • Chanda B., Asamoah O.K., Blunck R., Roux B., Bezanilla F. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856

    CAS  PubMed  Google Scholar 

  • Chandy K.G., Gutman G.A. 1995. Voltage-gated K+ channels. In: R.A. North (eds). Ligand-, Voltage-Gated Ion Channels. CRC, Boca Raton, FL pp. 1–71

    Google Scholar 

  • Chang S.H., Phelps P.C., Berezesky I.K., Ebersberger M.L., Jr., Trump B.F. 2000. Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells (NRK-52E). Am. J. Pathol. 156:637–649

    CAS  PubMed  Google Scholar 

  • Choe S. 2002. Potassium channel structures. Nat. Rev. Neurosci. 3:115–121

    CAS  PubMed  Google Scholar 

  • Clapp L.H. 1995. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Cardiovasc. Res. 30:460–468

    CAS  PubMed  Google Scholar 

  • Clapp L.H., Gurney A.M. 1992. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am. J. Physiol. 262:H916–H920

    CAS  PubMed  Google Scholar 

  • Coetzee W.A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M.S., Ozaita A., Pountney D., Saganich M., Vega-Saenz de Miera E., Rudy B. 1999. Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci. 868:233–285

    CAS  PubMed  Google Scholar 

  • Conway M.A., Nelson M.T., Brayden J.E. 1994. 2-Deoxyglucose-induced vasodilation and hyperpolarization in rat coronary artery are reversed by glibenclamide. Am. J. Physiol. 266:H1322–H1326

    CAS  PubMed  Google Scholar 

  • Coppock E.A., Tamkun M.M. 2001. Differential expression of KV channel a- and b-subunits in the bovine pulmonary arterial circulation. Am. J. Physiol. 281:L1350–L1360

    CAS  Google Scholar 

  • Cox D.H., Aldrich R.W. 2000. Role of the b1 subunit of large-conductance Ca2+-activated K+ channel gating energetics: Mechanisms of enhanced Ca2+ sensitivity. J. Gen. Physiol. 116:411–432

    CAS  PubMed  Google Scholar 

  • Czirják G., Enyedi P. 2002. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277:5426–5432

    PubMed  Google Scholar 

  • Dallaporta B., Hirsch T., Susin S.A., Zamzami N., Larochette N., Brenner C., Marzo I., Kroemer G. 1998. Potassium leakage during the apoptotic degradation phase. J. Immunol. 160:5605–5615

    CAS  PubMed  Google Scholar 

  • Dallaporta B., Marchetti P., de Pablo M.A., Maisse C., Duc H.T., Metivier D., Zamzami N., Geuskens M., Kroemer G. 1999. Plasma membrane potential in thymocyte apoptosis. J. Immunol. 162:6534–6542

    CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. 1992. Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808

    CAS  PubMed  Google Scholar 

  • Dębska G., May R., Kicinska A., Szewczyk A., Elger C.E., Kunz W.S. 2001. Potassium channel openers depolarize hippocampal mitochondria. Brain Res. 892:42–50

    PubMed  Google Scholar 

  • Delmas P., Brown D.A. 2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–862

    CAS  PubMed  Google Scholar 

  • Dispersyn G., Borgers M. 2001. Apoptosis in the heart: About programmed cell death and survival. News Physiol. Sci. 16:41–47

    CAS  PubMed  Google Scholar 

  • Doupnik C.A., Davidson N., Lester H.A. 1995. The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5:268–277

    CAS  PubMed  Google Scholar 

  • Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Duprat F., Girard C., Jarretou G., Lazdunski M. 2005. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J. Physiol. 562:235–244

    CAS  PubMed  Google Scholar 

  • Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. 1997. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16:5464–5471

    CAS  PubMed  Google Scholar 

  • Ekhterae D., Lin Z., Lundberg M.S., Crow M.T., Brosius F.C. III., Núñez G. 1999. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ. Res. 85:e70–e77

    CAS  PubMed  Google Scholar 

  • Ekhterae D., Platoshyn O., Krick S., Yu Y., McDaniel S.S., Yuan J.X.-J. 2001. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am. J. Physiol. 281:C157–C165

    CAS  Google Scholar 

  • Ekhterae D., Platoshyn O., Zhang S., Remillard C.V., Yuan J.X.-J. 2003. Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am. J. Physiol. 284:C1405–C1410

    CAS  Google Scholar 

  • Fernández-Fernández J.M., Nobles M., Currid A., Vázquez E., Valverde M.A. 2002. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am. J. Physiol. 283:C1705–C1714

    Google Scholar 

  • Ferri K.F., Kroemer G.. 2001. Mitochondria - the suicide organelles. BioEssays 23:111–115

    CAS  PubMed  Google Scholar 

  • Ficker E., Taglialatela M., Wible B.A., Henley C.M., Brown A.M. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    CAS  PubMed  Google Scholar 

  • Fitzpatrick C.M., Shi Y., Hutchins W.C., Su J., Gross G.J., Ostadal B., Tweddell J.S., Baker J.E. 2005. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am. J. Physiol. 288:H62–H68

    CAS  Google Scholar 

  • Forbes R.A., Steenbergen C., Murphy E. 2001. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ. Res. 88:802–809

    CAS  PubMed  Google Scholar 

  • Ganetzky B., Robertson G.A., Wilson G.F., Trudeau M.C., Titus S.A. 1999. The Eag family of K+ channels in Drosophila and mammals. Ann. N.Y. Acad. Sci. 868:356–369

    CAS  PubMed  Google Scholar 

  • Garlid K.D. 1996. Cation transport in mitochondria - the potassium cycle. Biochim. Biophys. Acta 1275:123–126

    PubMed  Google Scholar 

  • Garlid K.D., Paucek P. 2001. The mitochondrial potassium cycle. IUBMB Life 52:153–158

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Angelats M., Bortner C.D., Cidlowski J.A. 2000. Protein kinase C (PKC) inhibits Fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. J. Biol. Chem. 275:19609–19619

    PubMed  Google Scholar 

  • Gong J., Xu J., Bezanilla M., van Huizen R., Derin R., Li M. 1999. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 285:1565–1569

    CAS  PubMed  Google Scholar 

  • Goodman Y., Mattson M.P. 1996. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid b-peptide toxicity. Brain Res. 706:328–332

    CAS  PubMed  Google Scholar 

  • Green D.R., Evan G.I. 2002. A matter of life and death. Cancer Cell. 1:19–30

    CAS  PubMed  Google Scholar 

  • Grishin A., Ford H., Wang J., Li H., Salvador-Recatala V., Levitan E.S., Zaks-Makhina E. 2005. Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am. J. Physiol. 289:G815–G821

    CAS  Google Scholar 

  • Gross A., Jockel J., Wei M.C., Korsmeyer S.J. 1998. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17:3878–3885

    CAS  PubMed  Google Scholar 

  • Gu N., Vervaeke K., Hu H., Storm J.F. 2005. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol. 566:689–715

    CAS  PubMed  Google Scholar 

  • Gulbis J.M., Zhou M., Mann S., MacKinnon R. 2000. Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127

    CAS  PubMed  Google Scholar 

  • Gurney A.M., Osipenko O.N., MacMillan D., Kempsill F.E.J. 2002. Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 29:330–333

    CAS  PubMed  Google Scholar 

  • Gurney A.M., Osipenko O.N., MacMillan D., McFarlane K.M., Tate R.J., Kempsill F.E. 2003. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ. Res. 93:957–964

    CAS  PubMed  Google Scholar 

  • Hanner M., Schmalhofer W.A., Munujos P., Knaus H.G., Kaczorowski G.J., Garcia M.L. 1997. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc. Natl. Acad. Sci. USA 94:2853–2858

    CAS  PubMed  Google Scholar 

  • Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Ho K., Nichols C.G., Lederer W.J., Lytton J., Vassilev P.M., Kanazirska M.V., Hebert S.C. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    CAS  PubMed  Google Scholar 

  • Holmuhamedov E.L., Jovanovic’ S., Dzeja P.P., Jovanovic’ A., Terzic A. 1998. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am. J. Physiol. 275:H1567–H1576

    CAS  PubMed  Google Scholar 

  • Huang C.L., Feng S., Hilgemann D.W. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806

    CAS  PubMed  Google Scholar 

  • Hughes F.M., Jr., Bortner C.D., Purdy G.D., Cidlowski J.A. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272:30567–30576

    CAS  PubMed  Google Scholar 

  • Hughes F.M., Jr., Cidlowski J.A. 1998. Glucocorticoid-induced thymocyte apoptosis: protease-dependent activation of cell shrinkage and DNA fragmentation. J. Steroid Biochem. Mol. Biol. 65:207–217

    CAS  PubMed  Google Scholar 

  • Hugnot J.-P., Salinas M., Lesage F., Guillemare E., de Weille J., Heurteaux C., Mattei M.G., Lazdunski M. 1996. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 15:3322–3331

    CAS  PubMed  Google Scholar 

  • Hulme J.T., Coppock E.A., Felipe A., Martens J.R., Tamkun M.M. 1999. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 85:489–497

    CAS  PubMed  Google Scholar 

  • Inagaki N., Gonoi T., Clement J.P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    CAS  PubMed  Google Scholar 

  • Inai Y., Yabuki M., Kanno T., Akiyama J., Yasuda T., Utsumi K. 1997. Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct. Funct. 22:555–563

    Article  CAS  PubMed  Google Scholar 

  • Inoue I., Nagase H., Kishi K., Higuti T. 1991. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    CAS  PubMed  Google Scholar 

  • Isom L.L., De Jongh K.S., Catterall W.A. 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194

    CAS  PubMed  Google Scholar 

  • Johnson R.P., O’Kelly I.M., Fearon I.M. 2004. System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1. Am. J. Physiol. 286:C391–C397

    CAS  Google Scholar 

  • Keen J.E., Khawaled R., Farrens D.L., Neelands T., Rivard A., Bond C.T., Janowsky A., Fakler B., Adelman J.P., Maylie J. 1999. Domains responsible for constitutive and Ca2+-dependent Interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19:8830–8838

    CAS  PubMed  Google Scholar 

  • Keller S.H., Platoshyn O., Yuan J.X.-J. 2005. Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways. Cell Biochem. Biophys. 43:365–378

    CAS  PubMed  Google Scholar 

  • Kerschensteiner D., Soto F., Stocker M. 2005. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier a-subunits. Proc. Natl. Acad. Sci. USA 102:6160–6165

    CAS  PubMed  Google Scholar 

  • Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D. 1997. The release of cytochrome C from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    CAS  PubMed  Google Scholar 

  • Knaus H.G., Garcia-Calvo M., Kaczorowski G.J., Garcia M.L. 1994. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem. 269:3921–3924

    CAS  PubMed  Google Scholar 

  • Köhler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. 1995. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Google Scholar 

  • Köhler R., Wulff H., Eichler I., Kneifel M., Neumann D., Knorr A., Grgic I., Kämpfe D., Si H., Wibawa J., Real R., Borner K., Brakemeier S., Orzechowski H.-D., Reusch H.-P., Paul M., Chandy K.G., Hoyer J. 2003. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125

    PubMed  Google Scholar 

  • Koni P.A., Khanna R., Chang M.C., Tang M.D., Kaczmarek L.K., Schlichter L.C., Flavella R.A. 2003. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J. Biol. Chem. 278:39443–39451

    CAS  PubMed  Google Scholar 

  • Korge P., Honda H.M., Weiss J.N. 2005. K+-dependent regulation of matrix volume improves mitochondrial function under conditions mimicking ischemia-reperfusion. Am. J. Physiol. 289:H66–H77

    CAS  Google Scholar 

  • Kowaltowski A.J., Seetharaman S., Paucek P., Garlid K.D. 2001. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am. J. Physiol. 280:H649–H657

    CAS  Google Scholar 

  • Kramer J.W., Post M.A., Brown A.M., Kirsch G.E. 1998. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 a-subunits. Am. J. Physiol. 274:C1501–C1510

    CAS  PubMed  Google Scholar 

  • Krick S., Platoshyn O., McDaniel S.S., Rubin L.J., Yuan J.X.-J. 2001a. Augmented K+ currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am. J. Physiol. 281:L887–L894

    CAS  Google Scholar 

  • Krick S., Platoshyn O., Sweeney M., Kim H., Yuan J.X.-J. 2001b. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am. J. Physiol. 280:C970–C979

    CAS  Google Scholar 

  • Krick S., Platoshyn O., Sweeney M., McDaniel S.S., Zhang S., Rubin L.J., Yuan J.X.-J. 2002. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am. J. Physiol. 282:H184–H193

    CAS  Google Scholar 

  • Kroemer G., Reed J.C. 2000. Mitochondrial control of cell death. Nat. Med. 6:513–519

    CAS  PubMed  Google Scholar 

  • Kubo Y., Baldwin T.J., Jan Y.N., Jan L.Y. 1993a. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    CAS  Google Scholar 

  • Kubo Y., Reuveny E., Slesinger P.A., Jan Y.N., Jan L.Y. 1993b. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806

    CAS  Google Scholar 

  • Kuo A., Gulbis J.M., Antcliff J.F., Rahman T., Lowe E.D., Zimmer J., Cuthbertson J., Ashcroft F.M., Ezaki T., Doyle D.A. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    CAS  PubMed  Google Scholar 

  • Kurata H.T., Wang Z., Fedida D. 2004. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J. Gen. Physiol. 123:505–520

    CAS  PubMed  Google Scholar 

  • Lang F., Busch G.L., Ritter M., Völkl H., Waldegger S., Gulbins E., Häussinger D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306

    CAS  PubMed  Google Scholar 

  • Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S.M. 2003. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. 285:C1553–C1560

    CAS  Google Scholar 

  • Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romey G., Barhanin J. 1996a. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15:1004–1011

    CAS  Google Scholar 

  • Lesage F., Lazdunski M. 2000. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. 279:F793–F801

    CAS  Google Scholar 

  • Lesage F., Reyes R., Fink M., Duprat F., Guillemare E., Lazdunski M. 1996b. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 15:6400–6407

    CAS  Google Scholar 

  • Lewis A., Hartness M.E., Chapman C.G., Fearon I.M., Meadows H.J., Peers C., Kemp P.J. 2001. Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem. Biophys. Res. Comm. 285:1290–1294

    CAS  PubMed  Google Scholar 

  • Li P.-F., Maasch C., Haller H., Dietz R., von Harsdorf R. 1999. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100:967–973

    CAS  PubMed  Google Scholar 

  • Liu D., Lu C., Wan R., Auyeung W.W., Mattson M.P. 2002. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22:431–443

    CAS  PubMed  Google Scholar 

  • Liu D., Slevin J.R., Lu C., Chan S.L., Hansson M., Elmer E., Mattson M.P. 2003. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J. Neurochem. 86:966–979

    CAS  PubMed  Google Scholar 

  • Liu Y., Gao W.D., O’Rourke B., Marban E. 1996. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine - implications for ischemic preconditioning. Circ. Res. 78:443–454

    CAS  PubMed  Google Scholar 

  • Liu Y., Sato T., O’Rourke B., Marban E. 1998. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469

    CAS  PubMed  Google Scholar 

  • Liu Y., Sato T., Seharaseyon J., Szewczyk A., O’Rourke B., Marbán E. 1999. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann. N.Y. Acad. Sci. 874:27–37

    CAS  PubMed  Google Scholar 

  • Long S.B., Campbell E.B., Mackinnon R. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  Google Scholar 

  • Long S.B., Campbell E.B., Mackinnon R. 2005b. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    CAS  Google Scholar 

  • Lopatin A.N., Makhina E.N., Nichols C.G. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    CAS  PubMed  Google Scholar 

  • Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97:9487–9492

    CAS  PubMed  Google Scholar 

  • Mandegar M., Remillard C.V., Yuan J.X.-J. 2002. Ion channels in pulmonary arterial hypertension. Prog. Cardiovasc. Dis. 45:81–114

    CAS  PubMed  Google Scholar 

  • Mann C.L., Bortner C.D., Jewell C.M., Cidlowski J.A. 2001. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na+/K+-adenosine triphosphatase. Endocrinology 142:5059–5068

    CAS  PubMed  Google Scholar 

  • Martens J.R., Kwak Y.-G., Tamkun M.M. 1999. Modulation of KV channel α/β subunit interactions. Trends Cardiovasc. Med. 9:253–258

    CAS  PubMed  Google Scholar 

  • Mayr M., Xu Q. 2001. Smooth muscle cell apoptosis in arteriosclerosis. Exp. Gerontol. 36:969–987

    CAS  PubMed  Google Scholar 

  • McCobb D.P., Fowler N.L., Featherstone T., Lingle C.J., Saito M., Krause J.E., Salkoff L. 1995. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269:H767–H777

    CAS  PubMed  Google Scholar 

  • McLaughlin B., Pal S., Tran M.P., Parsons A.A., Barone F.C., Erhardt J.A., Aizenman E. 2001. p38 Activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J. Neurosci. 21:3303–3311

    CAS  PubMed  Google Scholar 

  • McMurtry M.S., Archer S.L., Altieri D.C., Bonnet S., Haromy A., Harry G., Bonnet S., Puttagunta L., Michelakis E.D. 2005. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J. Clin. Invest. 115:1479–1491

    CAS  PubMed  Google Scholar 

  • McMurtry M.S., Bonnet S., Wu X., Dyck J.R.B., Haromy A., Hashimoto K., Michelakis E.D. 2004. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–840

    CAS  PubMed  Google Scholar 

  • Meera P., Wallner M., Song M., Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. USA 94:14066–14071

    CAS  PubMed  Google Scholar 

  • Montague J.W., Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1999. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64:563–569

    CAS  PubMed  Google Scholar 

  • Murata M., Akao M., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ. Res. 89:891–898

    CAS  PubMed  Google Scholar 

  • Nelson M.T., Quayle J.M. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C799–C822

    CAS  PubMed  Google Scholar 

  • Neylon C.B., Lang R.J., Fu Y., Bobik A., Reinhart P.H. 1999. Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: Relationship between KCa channel diversity and smooth muscle cell function. Circ. Res. 85:e33–e43

    CAS  PubMed  Google Scholar 

  • Niemeyer M.I., Cid L.P., Barros L.F., Sepúlveda F.V. 2001. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276:43166–43174

    CAS  PubMed  Google Scholar 

  • Nietsch H.H., Roe M.W., Fiekers J.F., Moore A.L., Lidofsky S.D. 2000. Activation of potassium and chloride channels by tumor necrosis factor a: Role in liver cell death. J. Biol. Chem. 275:20556–20561

    CAS  PubMed  Google Scholar 

  • Nishida M., MacKinnon R. 2002. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965

    CAS  PubMed  Google Scholar 

  • Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    CAS  PubMed  Google Scholar 

  • Ojcius D.M., Zychlinsky A., Zheng L.M., Young J.D. 1991. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp. Cell. Res. 197:43–49

    CAS  PubMed  Google Scholar 

  • Orio P., Latorre R. 2005. Differential effects of b1 and b2 subunits on BK channel activity. J. Gen. Physiol. 125:395–411

    CAS  PubMed  Google Scholar 

  • Ottschytsch N., Raes A., Van Hoorick D., Snyders D.J. 2002. Obligatory heterotetramerization of three previously uncharacterized Kv channel a-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99:7986–7991

    CAS  PubMed  Google Scholar 

  • Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Joury N., Prevarskaya N. 2004. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am. J. Physiol. 287:C125–C134

    CAS  Google Scholar 

  • Pallotta B.S., Magleby K.L., Barrett J.N. 1981. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293:471–474

    CAS  PubMed  Google Scholar 

  • Papazian D.M., Schwarz T.L., Tempel B.L., Jan Y.N., Jan L.Y. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    CAS  PubMed  Google Scholar 

  • Patel A.J., Honoré E., Lesage F., Fink M., Romey G., Lazdunski M. 1999a. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    CAS  Google Scholar 

  • Patel A.J., Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflügers Arch. – Eur. J. Physiol. 448:261–273

    CAS  Google Scholar 

  • Patel A.J., Lazdunski M., Honoré E. 1997. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J. 16:6615–6625

    CAS  PubMed  Google Scholar 

  • Patel A.J., Lazdunski M., Honoré E. 1999b. Kv2.1/Kv9.3, an ATP-dependent delayed-rectifier K+ channel in pulmonary artery myocytes. Ann. N.Y. Acad. Sci. 868:438–4s41

    CAS  Google Scholar 

  • Pérez-García M.T., López-López J.R., González C. 1999. Kvb1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J. Gen. Physiol. 113:897–907

    PubMed  Google Scholar 

  • Platoshyn O., Zhang S., McDaniel S.S., Yuan J.X.-.J. 2002. Cytochrome c activates K+ channels before inducing apoptosis. Am. J. Physiol. 283:C1298–C1305

    CAS  Google Scholar 

  • Posson D.J., Ge P., Miller C., Bezanilla F., Selvin P.R. 2005. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851

    CAS  PubMed  Google Scholar 

  • Post M.A., Kirsch G.E., Brown A.M. 1996. Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett. 399:177–182

    CAS  PubMed  Google Scholar 

  • Pourrier M., Herrera D., Caballero R., Schram G., Wang Z., Nattel S. 2004. The Kv4.2 N-terminal restores fast inactivation and confers KChIP2 modulatory effects on N-terminal-deleted Kv1.4 channels. Pflügers Arch. – Eur. J. Physiol. 449:235–247

    CAS  Google Scholar 

  • Quayle J.M., Dart C., Standen N.B. 1996. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol. 494:715–720

    CAS  PubMed  Google Scholar 

  • Quayle J.M., Nelson M.T., Standen N.B. 1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77:1165–1232

    CAS  PubMed  Google Scholar 

  • Rasmusson R.L., Wang S., Castellino R.C., Morales M.J., Strauss H.C. 1997. The b subunit, Kvb1.2, acts as a rapid open channel blocker of NH2 terminal deleted Kv1.4 a-subunits. Adv. Exp. Med. Biol. 430:29–37

    CAS  PubMed  Google Scholar 

  • Remillard C.V., Yuan J.X.-J. 2004. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. 286:L49–L67

    CAS  Google Scholar 

  • Rettig J., Heinemann S.H., Wunder F., Lorra C., Parcej D.N., Dolly J.O., Pongs O. 1994. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369:289–294

    CAS  PubMed  Google Scholar 

  • Rousou A.J., Ericsson M., Federman M., Levitsky S., McCully J.D. 2004. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am. J. Physiol. 287:H1967–H1976

    CAS  Google Scholar 

  • Ryer E.J., Sakakibara K., Wang C., Sarkar D., Fisher P.B., Faries P.L., Kent K.C., Liu B. 2005. Protein kinase C delta induces apoptosis of vascular smooth muscle cells through induction of the tumor suppressor p53 by both p38 dependent and independent mechanisms. J. Biol. Chem. 280:35310–35317

    CAS  PubMed  Google Scholar 

  • Salinas M., Duprat F., Heurteaux C., Hugnot J.-P., Lazdunski M. 1997. New modulatory a subunits for mammalian Shab K+ channels. J. Biol. Chem. 272:24371–24379

    CAS  PubMed  Google Scholar 

  • Sano Y., Mochizuki S., Miyake A., Kitada C., Inamura K., Yokoi H., Nozawa K., Matsushime H., Furuichi K. 2002. Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett. 512:230–234

    CAS  PubMed  Google Scholar 

  • Sasaki N., Sato T., Ohler A., O’Rourke B., Marbán E. 2000. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445

    CAS  PubMed  Google Scholar 

  • Schrantz N., Blanchard D.A., Auffredou M.T., Sharma S., Leca G., Vazquez A. 1999. Role of caspases and possible involvement of retinoblastoma protein during TGFb-mediated apoptosis of human B lymphocytes. Oncogene 18:3511–3519

    CAS  PubMed  Google Scholar 

  • Sewing S., Roeper J., Pongs O. 1996. Kvβ1 subunit binding specific for Shaker-related potassium channel a subunits. Neuron 16:455–463

    CAS  PubMed  Google Scholar 

  • Shi W., Wang H.-S., Pan Z., Wymore R.S., Cohen I.S., McKinnon D., Dixon J.E. 1998. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia. J. Physiol. 511:675–682

    CAS  PubMed  Google Scholar 

  • Shimizu S., Eguchi Y., Kamiike W., Funahashi Y., Mignon A., Lacronique V., Matsuda H., Tsujimoto Y. 1998. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc. Natl. Acad. Sci. USA 95:1455–1459

    CAS  PubMed  Google Scholar 

  • Shimizu S., Ide T., Yanagida T., Tsujimoto Y. 2000a. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275:12321–12325

    CAS  Google Scholar 

  • Shimizu S., Konishi A., Kodama T., Tsujimoto Y. 2000b. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97:3100–3105

    CAS  Google Scholar 

  • Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. 1999. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257:549–554

    CAS  PubMed  Google Scholar 

  • Soh H., Park C.-S. 2001. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biochem. J. 80:2207–2215

    CAS  Google Scholar 

  • Stocker M. 2004. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5:758–770

    CAS  PubMed  Google Scholar 

  • Storey N.M., Gómez-Angelats M., Bortner C.D., Armstrong D.L., Cidlowski J.A. 2003. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 278:33319–33326

    CAS  PubMed  Google Scholar 

  • Szabò I., Gulbins E., Apfel H., Zhang X., Barth P., Busch A.E., Schlottmann K., Pongs O., Lang F. 1996. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem. 271:20465–20469

    PubMed  Google Scholar 

  • Thompson G.J., Langlais C., Cain K., Conley E.C., Cohen G.M. 2001. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem. J. 357:137–145

    CAS  PubMed  Google Scholar 

  • Toro L., Wallner M., Meera P., Tanaka Y. 1998. Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol. Sci. 13:112–117

    CAS  PubMed  Google Scholar 

  • Trimarchi J.R., Liu L., Smith P.J., Keefe D.L. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. 282:C588–C594

    CAS  Google Scholar 

  • Tseng-Crank J., Godinot N., Johansen T.E., Ahring P.K., Strøbæk D., Mertz R., Foster C.D., Olesen S.-P., Reinhart P.H. 1996. Cloning, expression, and distribution of a Ca2+-activated K+ channel β-subunit from human brain. Proc. Natl. Acad. Sci. USA 93:9200–9205

    CAS  PubMed  Google Scholar 

  • Vander Heiden M.G., Chandel N.S., Williamson E.K., Schumacker P.T., Thompson C.B. 1997. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mtochondrial ATP/ADP exchange. Cell 91:627–637

    CAS  PubMed  Google Scholar 

  • Vega-Saenz de Miera E.C. 2004. Modification of Kv2.1 K+ currents by the silent Kv10 subunits. Mol. Brain Res. 123:91–103

    CAS  PubMed  Google Scholar 

  • Vu C.C.Q., Bortner C.D., Cidlowski J.A. 2001. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J. Biol. Chem. 276:37602–37611

    CAS  PubMed  Google Scholar 

  • Wang H.-W., Zhang Y., Cao L., Han H., Wang J., Yang B., Nattel S., Wang Z. 2002. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 62:4843–4848

    CAS  PubMed  Google Scholar 

  • Wang J., Morishima S., Okada Y. 2003. IK channels are involved in the regulatory volume decrease in human epithelial cells. Am. J. Physiol. 284:C77–C84

    CAS  Google Scholar 

  • Wang J., Zhou Y., Wen H., Levitan I.B. 1999a. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci. 19:1–7

    Google Scholar 

  • Wang L., Xu D., Dai W., Lu L. 1999b. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J. Biol. Chem. 274:3678–3685

    CAS  Google Scholar 

  • Wang X., Xiao Y., Ichinose T., Yu S.P. 2000. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 295:524–530

    CAS  PubMed  Google Scholar 

  • Wang X.Q., Yu S.P. 2002. Tyrosine phosphorylation regulates activity of Na+, K+-ATPase in cortical neurons. Soc. Neurosci. Abstracts 446.8

  • Wesselborg S., Kabelitz D. 1993. Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death. Cell Immunol. 148:234–241

    CAS  PubMed  Google Scholar 

  • Wible B.A., Wang L., Kuryshev Y.A., Basu A., Haldar S., Brown A.M. 2003. Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3b in prostate cancer cells. J. Biol. Chem. 277:17852–17862

    Google Scholar 

  • Wolf C.M., Reynolds J.E., Morana S.J., Eastman A. 1997. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp. Cell. Res. 230:22–27

    CAS  PubMed  Google Scholar 

  • Xi Q., Cheranov S.Y., Jaggar J.H. 2005. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ. Res. 97:354–362

    CAS  PubMed  Google Scholar 

  • Xia X.-M., Ding J.P., Lingle C.J. 2003. Inactivation of BK channels by b2 the auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol. 121:125–148

    CAS  PubMed  Google Scholar 

  • Xia X.-M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    CAS  PubMed  Google Scholar 

  • Xiao A.Y., Wei L., Xia S., Rothman S., Yu S.-P. 2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J. Neurosci. 22:1350–1362

    CAS  PubMed  Google Scholar 

  • Xu W., Liu Y., Wang S., McDonald T., Van Eyk J.E., Sidor A., O’Rourke B. 2002. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    CAS  PubMed  Google Scholar 

  • Yang J., Jan Y.N., Jan L.Y. 1995. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054

    CAS  PubMed  Google Scholar 

  • Yang J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.-I., Jones D.P., Wang X. 1997. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    CAS  PubMed  Google Scholar 

  • Yao Z., Tong J., Tan X., Li C., Shao Z., Kim W.C., Vanden Hoek T.L., Becker L.B., Head C.A., Schumacker P.T. 1999. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am. J. Physiol. 277:H2504–H2509

    CAS  PubMed  Google Scholar 

  • Yu S.P., Yeh C.-H., Gottron F., Wang X., Grabb M.C., Choi D.W. 1999. Role of the outwardly delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J. Neurochem. 73:933–941

    CAS  PubMed  Google Scholar 

  • Yu S.P., Yeh C.-H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    CAS  PubMed  Google Scholar 

  • Yu W., Xu J., Li M. 1996. NAB domain is essential for the subunit assembly of both a-a and a-b complexes of Shaker-like potassium channels. Neuron 16:441–453

    CAS  PubMed  Google Scholar 

  • Yuan J., Yankner B.A. 2000. Apoptosis in the nervous system. Nature 407:802–809

    CAS  PubMed  Google Scholar 

  • Yuan X.-J., Tod M.L., Rubin L.J., Blaustein M.P. 1995. Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes. Am. J. Physiol. 268:C259–C270

    CAS  PubMed  Google Scholar 

  • Zagotta W.N., Hoshi T., Aldrich R.W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571

    CAS  PubMed  Google Scholar 

  • Zhang H.Y., McPherson B.C., Liu H., Baman T.S., Rock P., Yao Z. 2002. H2O2 opens mitochondrial KATP channels and inhibits GABA receptors via protein kinase C-e in cardiomyocytes. Am. J. Physiol. 282:H1395–H1403

    CAS  Google Scholar 

  • Zhao B., Rassendren F., Kaang B.K., Furukawa Y., Kubo T., Kandel E.R. 1994. A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron 13:1205–1213

    CAS  PubMed  Google Scholar 

  • Zhu H.i.-F., Dong J.-W., Zhu W.-Z., Ding H.-L., Zhou Z.-N. 2003. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci. 73:1275–1287

    CAS  PubMed  Google Scholar 

  • Zhu X.-R., Netzer R., Bohlke K., Liu Q., Pongs O. 1999. Structural and functional characterization of Kv6.2, a new g-subunit of voltage-gated potassium channel. Receptors Channels 6:337–350

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research and data presented here were supported in part by NIH/NHLBI grants (HL 064945, HL 054043, HL 66012, HL 69758, and HL66941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.X.-J. Yuan.

Additional information

E.D. Burg and C.V. Remilard this authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burg, E., Remillard, C. & Yuan, JJ. K+ Channels in Apoptosis. J Membrane Biol 209, 3–20 (2006). https://doi.org/10.1007/s00232-005-0838-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0838-4

Keywords

Navigation