Skip to main content
Log in

On the Role of Pore Helix in Regulation of TRPV5 by Extracellular Protons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The transient receptor potential channel TRPV5 is localized to the apical membrane of the distal renal tubule and plays an important role in the regulation of transepithelial Ca2+ reabsorption in kidney. We have previously reported that extracellular protons inhibit TRPV5 by binding to glutamate-522 (E522) in the extracellular domain of the channel. We suggested that E522 is an extracellular “pH sensor” and its titration by extracellular protons inhibits TRPV5 via conformational change(s) of the pore helix. We now report that mutation of a pore helix residue glutamate-535 to glutamine (E535Q) enhances the sensitivity of the channel to inhibition by extracellular protons (i.e., shifting the apparent pKa for inhibition by extracellular protons to the more alkaline extracellular pH). The enhancement of extracellular proton-mediated inhibition of E535Q mutant is also dependent on E522. We have also reported that intracellular acidification enhances the sensitivity of TRPV5 to inhibition by extracellular protons. We now find that modulation of the extracellular proton-mediated inhibition by intracellular acidification is preserved in the E535Q mutant. These results provide further support for the idea that pore helix is involved in the regulation of TRPV5 by extracellular protons. Inhibition of TRPV5 by extracellular protons may contribute to hypercalciuria in diseases associated with high acid load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Breslau N.A., Brinkley L., Hill K.D., Pak C.Y.C. 1988. Relationship between animal protein-rich diet to kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 66:140–146

    Article  PubMed  CAS  Google Scholar 

  • Clapham D.E. 2003. TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Dodier Y., Banderali U., Klein H., Topalak O., Dafi O., Simoes M., Bernatchez G., Sauve R., Parent L. 2004. Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279:6853–6862

    Article  PubMed  CAS  Google Scholar 

  • Doyle D.A., Morais-Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Flynn G.E., Johnson J.P. Jr., Zagotta W.N. 2001. Cyclic nucleotide-gated channels: Shedding light on the opening of a channel pore. Nat. Rev. Neurosci. 2:643–651

    Article  PubMed  CAS  Google Scholar 

  • Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hoenderop J.G., van der Kemp A.W., Hartog A., van de Graaf S.F., van Os C.H., Willems P.H., Bindels R.J. 1999. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274:8375–8378

    Article  PubMed  CAS  Google Scholar 

  • Hoenderop J.G., Nilius B., Bindels R.J. 2002. Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu. Rev. Physiol. 64:529–549

    Article  PubMed  CAS  Google Scholar 

  • Huang C.-L. 2004. The transient receptor potential superfamily of ion channels. J. Am. Soc. Nephrol. 15:1690–1699

    Article  PubMed  CAS  Google Scholar 

  • Jordt S.E., McKemy D.D., Julius D. 2003. Lessons from peppers and peppermint: The molecular logic of thermosensation. Curr. Opin. Neurobiol. 13:487–492

    Article  PubMed  CAS  Google Scholar 

  • Lee J., Cha S.-K., Sun T.-J., Huang C.-L. 2005. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J. Gen. Physiol. 126:439–451

    Article  PubMed  CAS  Google Scholar 

  • Montell C., Birnbaumer L., Flockerzi V., Bindels R.J., Bruford E.A., Caterina M.J., Clapham D.E., Harteneck C., Heller S., Julius D., Kojima I., Mori Y., Penner R., Prawitt D., Scharenberg A.M., Schultz G., Shimizu N., Zhu M.X. 2002. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 92:229–231

    Article  Google Scholar 

  • Nijenhuis T., Renkema K.Y., Hoenderop J.G., Bindels R.J. 2006. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J. Am. Soc. Nephrol. 17:617–626

    Article  PubMed  CAS  Google Scholar 

  • Nilius B., Vennekens R., Prenen J., Hoenderop J.G., Droogmans G., Bindels R.J. 2001. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Peng J.B., Chen X.Z., Berger U.V., Vassilev P.M., Tsukaguchi H., Brown E.M., Hediger M.A. 1999. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274:22739–22746

    Article  PubMed  CAS  Google Scholar 

  • Sooy K., Kohut J., Christakos S. 2000. The role of calbindin and 1,25-dihydroxyvitamin D3 in the kidney. Curr. Opin. Nephrol. Hypertens. 9:341–347

    Article  PubMed  CAS  Google Scholar 

  • Suki W.N., Lederer E.D., Rouse D. 2000. Renal transport of calcium, magnesium, and phosphate. In: Brenner B.M. editor. Brenner & Rector’s The Kidney, 6th ed., Saunders, Philadelphia pp. 520–574

    Google Scholar 

  • Sutton R.A., Wong N.L., Dirks J.H. 1979. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int. 15:520–533

    PubMed  CAS  Google Scholar 

  • Voets T., Janssens A., Droogmans G., Nilius B. 2004. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem. 279:15223–15230

    Article  PubMed  CAS  Google Scholar 

  • Yeh B.-I., Sun T.-J., Lee J.Z., Chen H.-H., Huang C.-L. 2003. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J. Biol. Chem. 278:51044–51052

    Article  PubMed  CAS  Google Scholar 

  • Yeh B.-I., Kim Y.K., Jabbar W., Huang C.-L. 2005. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J. 24:3224–3234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. In Deok Kong for technical assistance and critical reading of the manuscript. This study was supported by Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (A06-0043418) (to B.-I. Y.) and by National Institutes of Health grant DK−20543 (to C.-L. H.). C.-L. H. holds the Jacob Lemann Professorship in Calcium Transport of the University of Texas Southwestern Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung-Il Yeh or Chou-Long Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, BI., Yoon, J. & Huang, CL. On the Role of Pore Helix in Regulation of TRPV5 by Extracellular Protons. J Membrane Biol 212, 191–198 (2006). https://doi.org/10.1007/s00232-006-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0023-4

Keywords

Navigation