Skip to main content
Log in

Docking of calcium ions in proteins with flexible side chains and deformable backbones

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A method of docking Ca2+ ions in proteins with flexible side chains and deformable backbones is proposed. The energy was calculated with the AMBER force field, implicit solvent, and solvent exposure-dependent and distance-dependent dielectric function. Starting structures were generated with Ca2+ coordinates and side-chain torsions sampled in 1000 Å3 cubes centered at the experimental Ca2+ positions. The energy was Monte Carlo-minimized. The method was tested on fourteen Ca2+-binding sites. For twelve Ca2+-binding sites the root mean square (RMS) deviation of the apparent global minimum from the experimental structure was below 1.3 and 1.7 Å for Ca2+ ions and side-chain heavy atoms, respectively. Energies of multiple local minima correlate with the RMS deviations from the X-ray structures. Two Ca2+-binding sites at the surface of proteinase K were not predicted, because of underestimation of Ca2+ hydration energy by the implicit-solvent method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MCM:

Monte Carlo-minimization

RMSD:

Root mean square deviation

AGM:

Apparent global minimum

References

  • Acharya KR, Stuart DI, Walker NP, Lewis M, Phillips DC (1989) Refined structure of baboon alpha-lactalbumin at 1.7 a resolution. Comparison with C-type lysozyme. J Mol Biol 208:99–127

    Article  CAS  PubMed  Google Scholar 

  • Åqvist J (1990) Ion−water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94:8021–8024

    Article  Google Scholar 

  • Arriortua MI, Insausti M, Urtiaga MK, Via J, Rojo T (1992) Synthesis and structure determination of SrCa(edta).5H2O. Acta Crystallogr C 48:779–782

    Article  Google Scholar 

  • Bagley SC, Altman RB (1995) Characterizing the microenvironment surrounding protein sites. Protein Sci 4:622–635

    Article  CAS  PubMed  Google Scholar 

  • Bajorath J, Hinrichs W, Saenger W (1988) The enzymatic activity of proteinase K is controlled by calcium. Eur J Biochem 176:441–447

    Article  CAS  PubMed  Google Scholar 

  • Barnett BL, Uchtman VA (1979) Structural investigations of calcium-binding molecules. 4. Calcium binding to aminocarboxylates. Crystal structures of Ca(CaEDTA)·7H2O and Na(CaNTA). Inorg Chem 18:2674–2678

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Betzel C, Pal GP, Saenger W (1988) Synchrotron X-ray data collection and restrained least-squares refinement of the crystal structure of proteinase K at 1.5 A resolution. Acta Crystallogr B 44(Pt 2):163–172

    Article  PubMed  Google Scholar 

  • Bruhova I, Zhorov BS (2007) Monte Carlo-energy minimization of correolide in the Kv1. 3 channel: possible role of potassium ion in ligand-receptor interactions. BMC Struct Biol 7:5

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 A resolution. J Mol Biol 228:1177–1192

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KMJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Deng H, Chen G, Yang W, Yang JJ (2006) Predicting calcium-binding sites in proteins - a graph theory and geometry approach. Proteins 64:34–42

    Article  CAS  PubMed  Google Scholar 

  • Edsall JT, McKenzie HA (1978) Water and proteins. I. The significance and structure of water; its interaction with electrolytes and non-electrolytes. Adv Biophys 10:137–207

    CAS  PubMed  Google Scholar 

  • Francesconi A, Duvoisin RM (2004) Divalent cations modulate the activity of metabotropic glutamate receptors. J Neurosci Res 75:472–479

    Article  CAS  PubMed  Google Scholar 

  • Galinska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379:929–935

    Article  CAS  PubMed  Google Scholar 

  • Gros P, Fujinaga M, Dijkstra BW, Kalk KH, Hol WG (1989) Crystallographic refinement by incorporation of molecular dynamics: thermostable serine protease thermitase complexed with eglin c. Acta Crystallogr B 45(Pt 5):488–499

    Article  PubMed  Google Scholar 

  • Harding MM (2002) Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr D Biol Crystallogr 58:872–874

    Article  PubMed  CAS  Google Scholar 

  • Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr D Biol Crystallogr 62:678–682

    Article  PubMed  CAS  Google Scholar 

  • Holland DR, Tronrud DE, Pley HW, Flaherty KM, Stark W, Jansonius JN, McKay DB, Matthews BW (1992) Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry 31:11310–11316

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Kushick JN, Weinstein H (1988) Structural and energetic parameters of Ca2+ binding to peptides and proteins. Biopolymers 27:1865–1886

    Article  CAS  PubMed  Google Scholar 

  • Houdusse A, Gaucher JF, Krementsova E, Mui S, Trybus KM, Cohen C (2006) Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc Natl Acad Sci USA 103:19326–19331

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhou Y, Yang W, Butters R, Lee HW, Li S, Castiblanco A, Brown EM, Yang JJ (2007) Identification and dissection of Ca(2+)-binding sites in the extracellular domain of Ca(2+)-sensing receptor. J Biol Chem 282:19000–19010

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Saunders JA, Liwo A, Oldziej S, Scheraga HA (2004) A united residue force-field for calcium-protein interactions. Protein Sci 13:2725–2735

    Article  CAS  PubMed  Google Scholar 

  • Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  CAS  PubMed  Google Scholar 

  • McPhalen CA, Strynadka NC, James MN (1991) Calcium-binding sites in proteins: a structural perspective. Adv Protein Chem 42:77–144

    Article  CAS  PubMed  Google Scholar 

  • Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538–548

    Article  CAS  PubMed  Google Scholar 

  • Meot-Ner M (1987) Heats of hydration of organic ions: predictive relations and analysis of solvation factors based on ion clustering. J Phys Chem 91:417–426

    Article  CAS  Google Scholar 

  • Meyer E, Cole G, Radhakrishnan R, Epp O (1988) Structure of native porcine pancreatic elastase at 1.65 A resolution. Acta Crystallogr B 44:26–38

    Article  PubMed  Google Scholar 

  • Nayal M, Di Cera E (1994) Predicting Ca(2+)-binding sites in proteins. Proc Natl Acad Sci USA 91:817–821

    Article  CAS  PubMed  Google Scholar 

  • Pidcock E, Moore GR (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6:479–489

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Pedigo S (2005) Calcium-dependent stability studies of domains 1 and 2 of epithelial cadherin. Biochemistry 44:13692–13701

    Article  CAS  PubMed  Google Scholar 

  • Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L (2005) Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci USA 102:10147–10152

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Somvanshi RK, Sharma S, Dey S, Kaur P, Singh TP (2007) Structural elements of ligand recognition site in secretory phospho-lipase A2 and structure-based design of specific inhibitors. Curr Top Med Chem 7:757–764

    Article  CAS  PubMed  Google Scholar 

  • Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT (2004) Predicting metal-binding site residues in low-resolution structural models. J Mol Biol 342:307–320

    Article  CAS  PubMed  Google Scholar 

  • Suarez MC, Rocha CB, Sorenson MM, Silva JL, Foguel D (2008) Free-energy linkage between folding and calcium binding in EF-hand proteins. Biophys J 95:4820–4828

    Article  CAS  PubMed  Google Scholar 

  • Szmola R, Sahin-Toth M (2007) Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht’s enzyme Y. Proc Natl Acad Sci USA 104:11227–11232

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov D, Zhorov BS (2007) Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Biophys J 93:1557–1570

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov DB, Zhorov BS (2008) Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 283:17594–17604

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci USA 99:2660–2665

    Article  CAS  PubMed  Google Scholar 

  • Veltman OR, Vriend G, Berendsen HJ, Van den Burg B, Venema G, Eijsink VG (1998) A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases. Biochemistry 37:5312–5319

    Article  CAS  PubMed  Google Scholar 

  • Vyas NK, Vyas MN, Quiocho FA (1988) Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242:1290–1295

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Altman RB (1998) Recognizing protein binding sites using statistical descriptions of their 3D environments. Pac Symp Biocomput 3:497–508

    Google Scholar 

  • Wei L, Huang ES, Altman RB (1999) Are predicted structures good enough to preserve functional sites? Structure 7:643–650

    Article  CAS  PubMed  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  • Wu X, Reid RE (1997) Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation. Biochemistry 36:3608–3616

    Article  CAS  PubMed  Google Scholar 

  • Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci USA 87:5648–5652

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lee HW, Hellinga H, Yang JJ (2002) Structural analysis, identification, and design of calcium-binding sites in proteins. Proteins 47:344–356

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Jones LM, Isley L, Ye Y, Lee HW, Wilkins A, Liu ZR, Hellinga HW, Malchow R, Ghazi M, Yang JJ (2003) Rational design of a calcium-binding protein. J Am Chem Soc 125:6165–6171

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Wilkins AL, Ye Y, Liu ZR, Li SY, Urbauer JL, Hellinga HW, Kearney A, van der Merwe PA, Yang JJ (2005) Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc 127:2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Yasuhiko S, Setsuko N (1991) Parametrization of calcium binding site in proteins and molecular dynamics simulation on phospholipase A2. J Comput Chem 12:717–730

    Article  Google Scholar 

  • Zhorov BS (1981) Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J Struct Chem 22:4–8

    Article  Google Scholar 

  • Zhorov BS (1983) Vector method for calculating derivatives of the energy deformation of valence angles and torsion energy of complex molecules according to generalized coordinates. J Struct Chem 23:649–655

    Article  Google Scholar 

  • Zhorov BS, Ananthanarayanan VS (1996) Structural model of a synthetic Ca2+ channel with bound Ca2+ ions and dihydropyridine ligand. Biophys J 70:22–37

    Article  CAS  PubMed  Google Scholar 

  • Zhorov BS, Lin SX (2000) Monte Carlo-minimized energy profile of estradiol in the ligand-binding tunnel of 17 beta-hydroxysteroid dehydrogenase: atomic mechanisms of steroid recognition. Proteins 38:414–427

    Article  CAS  PubMed  Google Scholar 

  • Zhorov BS, Folkman EV, Ananthanarayanan VS (2001) Homology model of dihydropyridine receptor: implications for L-type Ca(2+) channel modulation by agonists and antagonists. Arch Biochem Biophys 393:22–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Denis B. Tikhonov for helpful discussions. The study was supported by the Canadian Institutes of Health Research (grant MOP-53229 to BSZ). This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: http://www.sharcnet.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Zhorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, R.C.K., Zhorov, B.S. Docking of calcium ions in proteins with flexible side chains and deformable backbones. Eur Biophys J 39, 825–838 (2010). https://doi.org/10.1007/s00249-009-0561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0561-7

Keywords

Navigation