Skip to main content
Log in

The SLC13 gene family of sodium sulphate/carboxylate cotransporters

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

An Erratum to this article was published on 21 November 2003

Abstract

The SLC13 gene family consist of five sequence-related members that have been identified in a variety of animals, plants, yeast and bacteria. Proteins encoded by these genes are divided into two functionally unrelated groups: the Na+-sulphate (NaS) cotransporters and the Na+-carboxylate (NaC) cotransporters. Members of this family include the renal Na+-dependent inorganic sulphate transporter-1 (NaSi-1, SLC13A1), the Na+-dependent dicarboxylate transporters NaDC-1/SDCT1 (SLC13A2), NaDC-3/SDCT2 (SLC13A3), the sulphate transporter-1 (SUT-1, SLC13A4) and the Na+-coupled citrate transporter (NaCT, SLC13A5). The general characteristics of the SLC13 proteins are that they encode multi-spanning proteins with 8–13 transmembrane domains, have a wide tissue distribution with most being expressed in the epithelial cells of the kidney and the gastrointestinal tract. They are Na+-coupled symporters, DIDS-insensitive, with strong cation preference for Na+, with a Na+:anion coupling ratio of around 3:1 and have a substrate preference for divalent anions, which include tetraoxyanions (for the NaS cotransporters) or Krebs cycle intermediates, including mono-, di-, and tri-carboxylates (for the NaC cotransporters). The purpose of this review is to provide an update on the most recent advances and to summarize the biochemical, physiological and structural aspects of the vertebrate SLC13 gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Aruga S, Wehrli S, Kaissling B, Moe OW, Preisig PA, Pajor AM, Alpern RJ (2000) Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 58:206–215

    Article  CAS  PubMed  Google Scholar 

  2. Bai L, Pajor AM (1997) Expression cloning of NaDC-2, an intestinal Na+- or Li+-dependent dicarboxylate transporter. Am J Physiol 273:G267–G274

    CAS  PubMed  Google Scholar 

  3. Beck L, Markovich D (2000) The mouse Na+-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890

    CAS  PubMed  Google Scholar 

  4. Besseghir K, Roch-Ramel F (1987) Renal excretion of drugs and other xenobiotics. Renal Physiol 10:221–241

    CAS  PubMed  Google Scholar 

  5. Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158

    CAS  PubMed  Google Scholar 

  6. Burckhardt BC, Drinkuth B, Menzel C, Konig A, Steffgen J, Wright SH, Burckhardt G (2002) The renal Na+-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl-compounds and contributes to renal heavy metal detoxification. J Am Soc Nephrol 13:2628–2638

    CAS  PubMed  Google Scholar 

  7. Busch AE, Waldegger S, Herzer T, Biber J, Markovich D, Murer H, Lang F (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4 2− transport protein NaSi-1. J Biol Chem 269:12407–12409

    CAS  PubMed  Google Scholar 

  8. Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103:1159–1168

    CAS  PubMed  Google Scholar 

  9. Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981

    Article  CAS  PubMed  Google Scholar 

  10. Dawson P, Markovich D (2002) Regulation of the mouse Nas1 gene by Vitamin D and thyroid hormone. Pflugers Arch 444:353–359

    Article  CAS  PubMed  Google Scholar 

  11. Dawson PA, Beck L, Markovich D (2003) Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking the sodium-sulfate cotransporter, Nas1. Proc Natl Acad Sci USA (In press)

  12. Fei YJ, Inoue K, Ganapathy V (2003) Structural and Functional Characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278:6136–6144

    Article  CAS  PubMed  Google Scholar 

  13. Fernandes I, Hampson G, Cahours X, Morin P, Coureau C, Couette S, Prie D, Biber J, Murer H, Friedlander G, Silve C (1997) Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 100:2196–2203

    CAS  PubMed  Google Scholar 

  14. Fernandes I, Laouari D, Tutt P, Hampson G, Friedlander G, Silve C (2001) Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney Int 59:210–221

    CAS  PubMed  Google Scholar 

  15. Girard JP, Baekkevold ES, Feliu J, Brandtzaeg P, Amalric F (1999) Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules. Proc Natl Acad Sci USA 96:12772–12777

    Article  CAS  PubMed  Google Scholar 

  16. Griffith DA, Pajor AM (1999) Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry 38:7524–7531

    Article  CAS  PubMed  Google Scholar 

  17. Huang W, Wang H, Kekuda R, Fei YJ, Friedrich A, Wang J, Conway SJ, Cameron RS, Leibach FH, Ganapathy V (2000) Transport of N-acetylaspartate by the Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J Pharmacol Exp Ther 295:392–403

    Google Scholar 

  18. Inoue K, Fei YJ, Huang W, Zhuang L, Chen Z, Ganapathy V (2002) Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J 367:313–319

    Article  CAS  PubMed  Google Scholar 

  19. Inoue K, Zhuang L, Ganapathy V (2002) Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun 299:465–471

    Article  CAS  PubMed  Google Scholar 

  20. Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2002) Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem 277:39469–39476

    Article  CAS  PubMed  Google Scholar 

  21. Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD, Prasad PD, Ganapathy V (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274:3422–3429

    Article  CAS  PubMed  Google Scholar 

  22. Khatri IA, Kovacs SV, Forstner JF (1996) Cloning of the cDNA for a rat intestinal Na+/dicarboxylate cotransporter reveals partial sequence homology with a rat intestinal mucin. Biochim Biophys Acta 1309:58–62

    Article  CAS  PubMed  Google Scholar 

  23. Lee A, Markovich D (2003) Cloning and characterization of the human renal Na+-sulfate cotransporter gene (NAS1) promoter. Kidney Int (In press)

  24. Lee A, Beck L, Markovich D (2000) The human renal Na+-sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization and functional characterization. Genomics 70:354–363

    Google Scholar 

  25. Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–644

    CAS  PubMed  Google Scholar 

  26. Levi M, McDonald LA, Preisig PA, Alpern RJ (1991) Chronic K depletion stimulates rat renal brush-border membrane Na-citrate cotransporter. Am J Physiol 261:F767–F773

    CAS  PubMed  Google Scholar 

  27. Markovich D (2000) Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. Eur J Cell Biol 79:531–538

    CAS  PubMed  Google Scholar 

  28. Markovich D (2001) The Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1534

    CAS  PubMed  Google Scholar 

  29. Markovich D, Fogelis T (1999) Ontogeny of renal sulfate transporters: postnatal mRNA and protein expression. Pediatr Nephrol 13:806–811

    Article  CAS  PubMed  Google Scholar 

  30. Markovich D, Knight D (1998) Renal Na-Si cotransporter NaSi-1 is inhibited by heavy metals. Am J Physiol 274:F283–F289

    CAS  PubMed  Google Scholar 

  31. Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO4 2− cotransport. Proc Natl Acad Sci USA 90:8073–8077

    CAS  PubMed  Google Scholar 

  32. Markovich D, Murer H, Biber J, Sakhaee K, Pak C, Levi M (1998) Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. J Am Soc Nephrol 9:1568–1573

    CAS  PubMed  Google Scholar 

  33. Markovich D, Wang H, Puttaparthi K, Zajicek H, Rogers T, Murer H, Biber J, Levi M (1999) Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney Int 55:244–251

    CAS  PubMed  Google Scholar 

  34. Markovich D, Werner A, Murer H (1999) Expression cloning with Xenopus oocytes. In: Hildebrandt F, Igarashi, P (eds) Techniques in molecular medicine. Springer, Berlin Heidelberg New York, pp 310–318

  35. Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270:5779–5785

    CAS  PubMed  Google Scholar 

  36. Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol 270:F642–F648

    CAS  Google Scholar 

  37. Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682

    Article  CAS  PubMed  Google Scholar 

  38. Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J. Membr Biol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  39. Pajor AM, Sun N (1999) Protein kinase C-mediated regulation of the renal Na+/dicarboxylate cotransporter, NaDC-1. Biochim Biophys Acta 1420:223–230

    CAS  PubMed  Google Scholar 

  40. Pajor AM, Sun NN (2000) Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol 279:F482–F490

    CAS  PubMed  Google Scholar 

  41. Pajor AM, Sun N, Bai L, Markovich D, Sule P (1998) The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein. Biochim Biophys Acta 1370:98–106

    Article  CAS  PubMed  Google Scholar 

  42. Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol 280:C1215–C1223

    CAS  PubMed  Google Scholar 

  43. Puttaparthi K, Markovich D, Halaihel N, Wilson P, Zajicek HK, Wang H, Biber J, Murer H, Rogers T, Levi M (1999) Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol 276:C1398–C1404

    CAS  PubMed  Google Scholar 

  44. Sagawa K, DuBois DC, Almon RR, Murer H, Morris ME (1998) Cellular mechanisms of renal adaptation of sodium-dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 287:1056–1062

    CAS  PubMed  Google Scholar 

  45. Sagawa K, Murer H, Morris ME (1999) Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. Am J Physiol 276:F164–F171

    CAS  PubMed  Google Scholar 

  46. Sagawa K, Darling IM, Murer H, Morris ME (2000) Glucocorticoid-Induced Alterations of Renal Sulfate Transport. J Pharmacol Exp Ther 294:658–663

    CAS  PubMed  Google Scholar 

  47. Saier MHJ, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng TT, Wachi S, Young GB (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56

    CAS  PubMed  Google Scholar 

  48. Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T, Endou H (1998) Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol 275:F298–F305

    CAS  PubMed  Google Scholar 

  49. Steffgen J, Burckhardt BC, Langenberg C, Kuhne L, Muller GA, Burckhardt G, Wolff NA (1999) Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem 274:20191–20196

    Article  CAS  PubMed  Google Scholar 

  50. Von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    PubMed  Google Scholar 

  51. Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am J Physiol 278:C1019–C1030

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors laboratories is supported by the Australian Research Council and the National Health and Medical Research Council (to D.M.) and the Swiss National Science Foundation (to H.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Markovich.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00424-003-1207-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovich, D., Murer, H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch - Eur J Physiol 447, 594–602 (2004). https://doi.org/10.1007/s00424-003-1128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1128-6

Keywords

Navigation