Skip to main content
Log in

Interaction of syntaxin with a single Kv1.1 channel: a possible mechanism for modulating neuronal excitability

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Voltage-gated K+ channels are crucial for intrinsic neuronal plasticity and present a target for modulations by protein–protein interactions, notably, by exocytotic proteins demonstrated by us in several systems. Here, we investigated the interaction of a single Kv1.1 channel with syntaxin 1A. Syntaxin decreased the unitary conductance of all conductance states (two subconductances and a full conductance) and decreased their open probabilities by prolongation of mean closed dwell-times at depolarized potentials. However, at subthreshold potentials syntaxin 1A increased the probabilities of the subconductance states. Consequently, the macroscopic conductance is decreased at potentials above threshold and increased at threshold potentials. Numerical modeling based on steady-state and kinetic analyses suggests: (1) a mechanism whereby syntaxin controls activation gating by forcing the conductance pathway only via a sequence of discrete steps through the subconductance states, possibly via a breakdown of cooperative movements of voltage sensors that exist in Kv1.1; (2) a physiological effect, apparently paradoxical for an agent that reduces K+ current, of attenuating neuronal firing frequency via an increase in K+ shunting conductance. Such modulation of the gain of neuronal output in response to different levels of syntaxin is in accord with the suggested role for Kv1.1 in axonal excitability and synaptic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O (1995) Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci 7:2189–2205

    Article  PubMed  CAS  Google Scholar 

  2. Wang H, Allen ML, Grigg JJ, Noebels JL, Tempel BL (1995) Hypomyelination alters K+ channel expression in mouse mutants shiverer and Trembler. Neuron 15:1337–1347

    Article  PubMed  CAS  Google Scholar 

  3. Rasband MN, Trimmer JS, Schwarz TL, Levinson SR, Ellisman MH, Schachner M, Shrager P (1998) Potassium channel distribution, clustering, and function in remyelinating rat axons. J Neurosci 18:36–47

    PubMed  CAS  Google Scholar 

  4. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365:75–79

    Article  PubMed  CAS  Google Scholar 

  5. Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci 14:4588–4599

    PubMed  CAS  Google Scholar 

  6. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234

    PubMed  CAS  Google Scholar 

  7. Stuhmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    PubMed  CAS  Google Scholar 

  8. Meiri N, Ghelardini C, Tesco G, Galeotti N, Dahl D, Tomsic D, Cavallaro S, Quattrone A, Capaccioli S, Bartolini A, Alkon DL (1997) Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat. Proc Natl Acad Sci USA 94:4430–4434

    Article  PubMed  CAS  Google Scholar 

  9. Shillito P, Molenaar PC, Vincent A, Leys K, Zheng W, van den Berg RJ, Plomp JJ, van Kempen GT, Chauplannaz G, Wintzen AR et al (1995) Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol 38:714–722

    Article  PubMed  CAS  Google Scholar 

  10. Fili O, Michaelevski I, Bledi Y, Chikvashvili D, Singer-Lahat D, Boshwitz H, Linial M, Lotan I (2001) Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating. J Neurosci 21:1964–1974

    PubMed  CAS  Google Scholar 

  11. Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971–1974

    Article  PubMed  CAS  Google Scholar 

  12. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375:645–653

    Article  PubMed  CAS  Google Scholar 

  13. Linial M, Parnas D (1996) Deciphering neuronal secretion: tools of the trade. Biochim Biophys Acta 1286:117–152

    PubMed  Google Scholar 

  14. Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7:581–586

    Article  PubMed  CAS  Google Scholar 

  15. Lopantsev V, Tempel BL, Schwartzkroin PA (2003) Hyperexcitability of CA3 pyramidal cells in mice lacking the potassium channel subunit Kv1.1. Epilepsia 44:1506–1512

    Article  PubMed  CAS  Google Scholar 

  16. Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    Article  PubMed  CAS  Google Scholar 

  17. Michaelevski I, Chikvashvili D, Tsuk S, Fili O, Lohse MJ, Singer-Lahat D, Lotan I (2002) Modulation of a brain voltage-gated K+ channel by syntaxin 1A requires the physical interaction of Gbetagamma with the channel. J Biol Chem 277:34909–34917

    Article  PubMed  CAS  Google Scholar 

  18. Jarvis SE, Magga JM, Beedle AM, Braun JE, Zamponi GW (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gbetagamma. J Biol Chem 275:6388–6394

    Article  PubMed  CAS  Google Scholar 

  19. Jarvis SE, Zamponi GW (2001) Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 21:2939–2948

    PubMed  CAS  Google Scholar 

  20. Bezprozvanny I, Zhong P, Scheller RH, Tsien RW (2000) Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci USA 97:13943–13948

    Article  PubMed  CAS  Google Scholar 

  21. Stanley EF, Mirotznik RR (1997) Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385:340–343

    Article  PubMed  CAS  Google Scholar 

  22. Dascal N, Lotan I, Karni E, Gigi A (1992) Calcium channel currents in Xenopus oocytes injected with rat skeletal muscle RNA. J Physiol 450:469–490

    PubMed  CAS  Google Scholar 

  23. Singer-Lahat D, Dascal N, Lotan I (1999) Modal behavior of the Kv1.1 channel conferred by the Kvbeta1.1 subunit and its regulation by dephosphorylation of Kv1.1. Pflugers Arch 439:18–26

    Article  PubMed  CAS  Google Scholar 

  24. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  25. Islas LD, Sigworth FJ (1999) Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J Gen Physiol 114:723–742

    Article  PubMed  CAS  Google Scholar 

  26. Qin F, Auerbach A, Sachs F (1997) Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci 264:375–383

    Article  PubMed  CAS  Google Scholar 

  27. Qin F, Auerbach A, Sachs F (2000) Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J 79:1928–1944

    Article  PubMed  CAS  Google Scholar 

  28. Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140:177–183

    PubMed  CAS  Google Scholar 

  29. Hodgkin AL, Huxley AF (1952) Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17:43–52

    PubMed  CAS  Google Scholar 

  30. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    PubMed  CAS  Google Scholar 

  31. Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730–3742

    Article  PubMed  Google Scholar 

  32. Zheng J, Sigworth FJ (1997) Selectivity changes during activation of mutant Shaker potassium channels. J Gen Physiol 110:101–117

    Article  PubMed  CAS  Google Scholar 

  33. Zheng J, Sigworth FJ (1998) Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels. J Gen Physiol 112:457–474

    Article  PubMed  CAS  Google Scholar 

  34. Condliffe SB, Zhang H, Frizzell RA (2004) Syntaxin 1A regulates ENaC channel activity. J Biol Chem 279:10085–10092

    Article  PubMed  CAS  Google Scholar 

  35. Chapman ML, Vandongen AM (2005) K channel subconductance levels result from heteromeric pore conformations. J Gen Physiol 126:87–103

    Article  PubMed  CAS  Google Scholar 

  36. Bezanilla F (2005) The origin of subconductance levels in voltage-gated K+ channels. J Gen Physiol 126:83–86

    Article  PubMed  CAS  Google Scholar 

  37. Cushman SJ, Nanao MH, Jahng AW, DeRubeis D, Choe S, Pfaffinger PJ (2000) Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol 7:403–407

    Article  PubMed  CAS  Google Scholar 

  38. Yao X, Liu W, Tian S, Rafi H, Segal AS, Desir GV (2000) Close association of the N terminus of Kv1.3 with the pore region. J Biol Chem 275:10859–10863

    Article  PubMed  CAS  Google Scholar 

  39. Wang G, Covarrubias M (2006) Voltage-dependent gating rearrangements in the intracellular T1–T1 interface of a K+ channel. J Gen Physiol 127:391–400

    Article  PubMed  CAS  Google Scholar 

  40. Yi BA, Minor DL Jr, Lin YF, Jan YN, Jan LY (2001) Controlling potassium channel activities: Interplay between the membrane and intracellular factors. Proc Natl Acad Sci USA 98:11016–11023

    Article  PubMed  CAS  Google Scholar 

  41. Chiu SY, Zhou L, Zhang CL, Messing A (1999) Analysis of potassium channel functions in mammalian axons by gene knockouts. J Neurocytol 28:349–364

    Article  PubMed  CAS  Google Scholar 

  42. Tan YP, Llano I (1999) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 520 Pt 1:65–78

    Article  CAS  Google Scholar 

  43. Dodson PD, Barker MC, Forsythe ID (2002) Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci 22:6953–6961

    PubMed  CAS  Google Scholar 

  44. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pong O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294

    Article  PubMed  CAS  Google Scholar 

  45. Rhodes KJ, Keilbaugh SA, Barrezueta NX, Lopez KL, Trimmer JS (1995) Association and colocalization of K+ channel alpha- and beta-subunit polypeptides in rat brain. J Neurosci 15:5360–5371

    PubMed  CAS  Google Scholar 

  46. Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Israel Academy of Sciences (I.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Lotan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information

(31 kb)

Supplementary Table 1

Kinetic parameters of the closed time distribution of Kv1.1 alone (24 kb)

Supplementary Table 2

Kinetic parameters of the closed time distribution of Kv1.1 in the presence of syx (27 kb)

Supplementary Figure 1

Po analysis of the S1 conductance level in Kv1.1 (a) versus Kv1.1+syx (b) in representative patches. Left panels: Po histograms for each sweep (linear leak and capacity currents were subtracted to obtain Po values from the event lists); Right panels: Po distribution histograms (empty sweeps were excluded) (JPEG 77 281 kb)

High resolution image file (TIFF 130 604 kb)

Supplementary Figure 2

Po analysis of the S2 conductance level in Kv1.1 (a) versus Kv1.1+syx (b) representative patches, as in Supplementary Fig. 1 (JPEG 79 362 kb)

High resolution image file (TIFF 137 030 kb)

Supplementary Figure 3

Po analysis of the F conductance level in Kv1.1 (a) versus Kv1.1+syx (b) in representative patches, as in Supplementary Fig. 1 (JPEG 79 899 kb)

High resolution image file (TIFF 141 572 kb)

Supplementary Figure 4

a,b. Analysis of Po values summarized over all conductance states (∑Po) . Left panels: Po histograms for each sweep (Linear leak and capacity currents were subtracted to obtain Po values from the event lists); Right panels: Po distribution histograms (empty sweeps were excluded) (JPEG 81 982 kb)

High resolution image file (TIFF 149 950 kb)

Supplementary Figure 5

Open time distribution histograms for Kv1.1 (a) and Kv1.1+syx (b) patches. Dwell times were presented with logarithmic histograms using a variable binning approach (4–8 bins/decade depending on the particular dwell time distribution). Ordinate axes presenting event numbers per bin transformed to square root distribution. The histograms were fitted with multi-exponential log probability function (see Materials and Methods). The obtained pdf (probability density function, see Materials and Methods) was introduced over the distribution histogram. Derived parameters are shown in Fig. 5 in the main text (JPEG 87 411 kb)

High resolution image file (TIFF 145 452 kb)

Supplementary Figure 6

Kinetic parameters derived from open time distributions. A,B. Voltage dependence of the open dwell-time constants (τ) (derived from the corresponding logarithmic distribution histograms) (a) and of the dwell time constants probabilities (p; see main text) (b), for each conductance level (S1, S2 or F, as denoted) (JPEG 53 055 kb)

High resolution image file (TIFF 10 600 kb)

Supplementary Figure 7

Closed dwell time distributions in Kv1.1 and Kv1.1+syx groups. A,B. Logarithmic distribution histograms at the denoted potentials for Kv1.1 and Kv1.1+syx, respectively, with 5-8 bins/decade. Fitting as in Supplementary Fig. 5. Derived kinetic parameters are summarized in Supplementary Tables 1 and 2 (JPEG 55 842 kb)

High resolution image file (TIFF 128 986 kb)

Supplementary Figure 8

The reconstituted Po values (see equ. 10 in the main text) at all voltages concur with the corresponding values obtained by the event list analysis (Fig. 3D in the main text) for both Kv1.1 and Kv1.1+syx groups (JPEG 24 035 kb)

High resolution image file (TIFF 5 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelevski, I., Korngreen, A. & Lotan, I. Interaction of syntaxin with a single Kv1.1 channel: a possible mechanism for modulating neuronal excitability. Pflugers Arch - Eur J Physiol 454, 477–494 (2007). https://doi.org/10.1007/s00424-007-0223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0223-5

Keywords

Navigation