Skip to main content

Advertisement

Log in

Physiological role of aquaporin 5 in salivary glands

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Regarding the 13 known mammalian aquaporins (AQPs), their functions in their expressing tissues, effects of their mutation/polymorphisms in humans, and effects of knockout of their genes are summarized in this review article. The roles of AQP5, an exocrine gland-type water channel, in the salivary gland under normal and pathophysiological conditions are reviewed in detail. First, the involvement of AQP5 in water secretion from acinar cells was demonstrated by measuring volume changes of acini/acinar cells, as well as activation energy (E a) in transepithelial water movement by NMR spectrometry, and a functional linkage between AQP5 and TRPV4 was suggested. Next, involvement of the parasympathetic nervous system on the AQP5 levels in the acinar cells of the submandibular and that of a β-adrenergic agonist on those in the parotid gland are described. That is, chorda tympani denervation induces autophagy of the submandibular gland, causing AQP5 degradation/metabolism, whereas isoproterenol, a β-adrenergic agonist, causes first an increase then decrease in AQP5 levels in the parotid gland, which action is coupled with the secretory-restoration cycle of amylase-containing secretory granules. The PG also responded to endotoxin, a lipopolysaccharide that activates NF-κB and MAPK pathways. Elevated NF-κB and AP-1 (c-Fos/c-Jun) form a complex that can bind to the NF-κB-responsive element on the AQP5 promoter and thus potentially downregulate AQP5 transcription. Salivary gland pathologies and conditions involving AQP5 and possible treatments are described as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Major intrinsic protein (MIP/MP26/MIP26) of the lens was reported before the discovery of AQP1 [127], and its function had been unknown. Since MIP26 afforded permeation of water and was highly homologous to members of the AQP family, it was later considered to be an AQP [106]. Thus the protein and gene of MIP26 are referred to as AQP0 [99, 117].

Abbreviations

ALLM:

N-Ac-Leu-Leu-methininal

AP-1:

Activator protein 1

AQP:

Aquaporin

CCh:

Carbachol

CTD:

Chorda timpani denervation

CQ:

Chloroquine

DPPVI:

Dipeptidyl peptidase IV

E a :

Activation energy

EMSA:

Electrophoretic mobility shift assay

ERK1/2:

Extracellular signal-regulated kinases 1/2

GFP:

Green fluorescent protein

IPR:

Isoproterenol

KO:

Knockout

LC3B-II:

Microtubule-associated protein 1 light chain 3 isoform B-II

LPS:

Lipopolysaccharide

MDCK:

Madin-Darby canine kidney

MAPK:

Mitogen-activated protein kinase

NF-κB:

Nuclear factor-kappa B

PG:

Parotid gland

P d :

Diffusive water permeability

P f :

Osmotic water permeability

RVD:

Regulatory volume decrease

SMG:

Submandibular gland

SNP:

Single nucleotide polymorphism

TRPV4:

Transient receptor potential cation channel, subfamily V, member 4

References

  1. Abdul-Wahab A, Takeichi T, Liu L, Lomas D, Hughes B, Akiyama M, McGrath JA, Mellerio JE (2015) Autosomal dominant diffuse non-epidermolytic palmoplantar keratoderma due to a recurrent mutation in aquaporin-5. Br J Dermatol. doi: 10.1111/bjd.13931 [Epub ahead of print]

  2. Akamatsu T, Parvin MN, Murdiastuti K, Kosugi-Tanaka C, Yao C, Miki O, Kanamori N, Hosoi K (2003) Expression and localization of aquaporins, members of the water channel family, during development of the rat submandibular gland. Pflügers Arch-Eur J Physiol 446:641–651

    Article  CAS  Google Scholar 

  3. Aure MH, Røed A, Galtung HK (2010) Intracellular Ca2+ responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell line. Eur J Oral Sci 118:237–244

    Article  CAS  PubMed  Google Scholar 

  4. Azlina A, Javkhlan P, Hiroshima Y, Hasegawa T, Yao C, Akamatsu T, Hosoi K (2010) Roles of lysosomal proteolytic systems in AQP5 degradation in the submandibular gland of rats following chorda tympani parasympathetic denervation. Am J Physiol-Gastrointest Liver Physiol 299:G1106–G1117

    Article  CAS  PubMed  Google Scholar 

  5. Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, Melvin JE (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 279:47681–47687

    Article  CAS  PubMed  Google Scholar 

  6. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP (2001) Subcellular distribution of aquaporin 5 in salivary glands in primary Sjögren’s syndrome. Lancet 358:1875–1876

    Article  CAS  PubMed  Google Scholar 

  7. Berry V, Francis P, Kaushal S, Moore A, Bhattacharya S (2000) Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q. Nat Genet 25:15–17

    Article  CAS  PubMed  Google Scholar 

  8. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–604

    Article  CAS  PubMed  Google Scholar 

  9. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  10. Blaydon DC, Lind LK, Plagnol V, Linton KJ, Smith FJ, Wilson NJ, McLean WH, Munro CS, South AP, Leigh IM, O’Toole EA, Lundström A, Kelsell DP (2013) Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am J Hum Genet 93:330–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burghardt B, Elkaer ML, Kwon TH, Rácz GZ, Varga G, Steward MC, Nielsen S (2003) Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut 52:1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Candreia C, Schmuziger N, Gürtler N (2010) Molecular analysis of aquaporin genes 1 to 4 in patients with Menière’s disease. Cell Physiol Biochem 26:787–792

    Article  CAS  PubMed  Google Scholar 

  13. Cao X, Yin J, Wang H, Zhao J, Zhang J, Dai L, Zhang J, Jiang H, Lin Z, Yang Y (2014) Mutation in AQP5, encoding aquaporin 5, causes palmoplantar keratoderma Bothnia type. J Invest Dermatol 134:284–287

    Article  CAS  PubMed  Google Scholar 

  14. Chanprasertyothin S, Saetung S, Rajatanavin R, Ongphiphadhanakul B (2010) Genetic variant in the aquaporin 9 gene is associated with bone mineral density in postmenopausal women. Endocrine 38:83–86

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Yao C, Hasegawa T, Akamatsu T, Yoshimura H, Hosoi K (2014) Effects of isoproterenol on aquaporin 5 levels in the parotid gland of mice in vivo. Am J Physiol-Endocrinol Metab 306:E100–E108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chepelinsky AB (2009) Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataract. In: Beitz E (ed) Handbook of experimental pharmacology (aquaporins), vol 190. Springer, Heidelberg, Germany, pp 265–297

    Google Scholar 

  17. Choi JH, Wu HG, Jung KC, Lee SH, Kwon EK (2009) Apoptosis and expression of AQP5 and TGF-beta in the irradiated rat submandibular gland. Cancer Res Treat 41:145–154

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chou CL, Ma T, Yang B, Knepper MA, Verkman AS (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554

    CAS  PubMed  Google Scholar 

  19. Dawes C, Jenkins GN (1964) The effects of different stimuli on the composition of saliva in man. J Physiol 170:86–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delporte C, Steinfeld S (2006) Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta 1758:1061–1070

    Article  CAS  PubMed  Google Scholar 

  21. DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA (1994) Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A 91:8984–8988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frøkiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047–F1057

    Article  CAS  PubMed  Google Scholar 

  23. Evans RL, Park K, Turner RJ, Watson GE, Nguyen HV, Dennett MR, Hand AR, Flagella M, Shull GE, Melvin JE (2000) Severe impairment of salivation in Na+/K+/2Clcotransporter (NKCC1)-deficient mice. J Biol Chem 275:26720–26726

    CAS  PubMed  Google Scholar 

  24. Foskett JK (1990) [Ca2+]i modulation of Cl content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol-Cell Physiol 259:C998–C1004

    CAS  Google Scholar 

  25. Francis P, Berry V, Bhattacharya S, Moore A (2000) Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol 84:1376–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  27. Geyer DD, Spence MA, Johannes M, Flodman P, Clancy KP, Berry R, Sparkes RS, Jonsen MD, Isenberg SJ, Bateman JB (2006) Novel single base deletional mutation in major intrinsic protein (MIP) in autosomal dominant cataract. Am J Ophthalmol 141:761–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gresz V, Horvath A, Gera I, Nielsen S, Zelles T (2015) Immunolocalization of AQP5 in resting and stimulated normal labial glands and in Sjögren’s syndrome. Oral Dis 21:e114–120

    Article  CAS  PubMed  Google Scholar 

  29. Groneberg DA, Gerber A, Fischer A (2001) Trafficking of lacrimal aquaporin-5 in Sjögren’s syndrome (Letter to editor). Lancet 357:2054–2055

    Article  CAS  PubMed  Google Scholar 

  30. Gu F, Zhai H, Li D, Zhao L, Li C, Huang S, Ma X (2007) A novel mutation in major intrinsic protein of the lens gene (MIP) underlies autosomal dominant cataract in a Chinese family. Mol Vis 13:1651–1656

    CAS  PubMed  Google Scholar 

  31. Gustafson CE, Levine S, Katsura T, McLaughlin M, Alexio MD, Tamarappoo BK, Verkman AS, Brown D (1998) Vasopressin regulated trafficking of a green fluorescent protein-aquaporin 2 chimera in LLC-PK1 cells. Histochem Cell Biol 110:377–386

    Article  CAS  PubMed  Google Scholar 

  32. Han L, Wang L, Zhang F, Liu KJ, Xiang B (2015) Effect of phenylephrine pretreatment on the expressions of aquaporin 5 and c-Jun N-Terminal kinase in irradiated submandibular gland. Radiat Res 183:693–700

    Article  CAS  PubMed  Google Scholar 

  33. Hansel NN, Sidhaye V, Rafaels NM, Gao L, Gao P, Williams R, Connett JE, Beaty TH, Mathias RA, Wise RA, King LS, Barnes KC (2010) Aquaporin 5 polymorphisms and rate of lung function decline in chronic obstructive pulmonary disease. PLoS One 5:e14226. doi:10.1371/journal.pone.0014226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621

    Article  CAS  PubMed  Google Scholar 

  35. Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151

    Article  CAS  PubMed  Google Scholar 

  36. Hasegawa T, Azlina A, Javkhlan P, Yao C, Akamatsu T, Hosoi K (2011) Novel phosphorylation of aquaporin-5 at its threonine 259 through cAMP signaling in salivary gland cells. Am J Physiol-Cell Physiol 301:C667–C678

    Article  CAS  PubMed  Google Scholar 

  37. Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS (1994) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497–5500

    CAS  PubMed  Google Scholar 

  38. Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY (2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem 277:10379–10386

    Article  CAS  PubMed  Google Scholar 

  39. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  CAS  PubMed  Google Scholar 

  40. Herrera M, Hong NJ, Ortiz PA, Garvin JL (2009) Endothelin-1 inhibits thick ascending limb transport via Akt-stimulated nitric oxide production. J Biol Chem 284:1454–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horn VJ, Baum BJ, Ambudkar IS (1988) β-Adrenergic receptor stimulation induces inositol trisphosphate production and Ca2+ mobilization in rat parotid acinar cells. J Biol Chem 263:12454–1260

    CAS  PubMed  Google Scholar 

  42. Iandiev I, Dukic-Stefanovic S, Hollborn M, Pannicke T, Hartig W, Wiedemann P, Reichenbach A, Bringmann A, Kohen L (2011) Immunolocalization of aquaporin-6 in the rat retina. Neurosci Lett 490:130–134

    Article  CAS  PubMed  Google Scholar 

  43. Ishibashi K (2009) New members of mammalian aquaporins: AQP10-AQP12. In: Beitz E (ed) Handbook of experimental pharmacology (aquaporins), vol 190. Springer, Heidelberg, Germany, pp 251–262

    Google Scholar 

  44. Ishibashi K, Koike S, Kondo S, Hara S, Tanaka Y (2009) The role of a group III AQP, AQP11 in intracellular organelle homeostasis. J Med Invest 56:312–317

    Article  PubMed  Google Scholar 

  45. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsakai A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  46. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  PubMed  Google Scholar 

  47. Ishibashi K, Kuwahara M, Kageyama Y, Tohsaka A, Marumo F, Sasaki S (1997) Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem Biophys Res Commun 237:714–718

    Article  CAS  PubMed  Google Scholar 

  48. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    Article  CAS  PubMed  Google Scholar 

  49. Ishibashi K, Sasaki S (1997) Aquaporin water channels in mammals. Clin Exp Nephrol 1:247–253

    Article  Google Scholar 

  50. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840:1507–1512

    Article  CAS  PubMed  Google Scholar 

  52. Ishibashi K, Yamauchi K, Kageyama Y, Saito-Ohara F, Ikeuchi T, Marumo F, Sasaki S (1998) Molecular characterization of human aquaporin-7 gene and its chromosomal mapping. Biochim Biophys Acta 1399:62–66

    Article  CAS  PubMed  Google Scholar 

  53. Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838

    Article  CAS  PubMed  Google Scholar 

  54. Jelen S, Gena P, Lebeck J, Rojek A, Praetorius J, Frøkiaer J, Fenton RA, Nielsen S, Calamita G, Rützler M (2012) Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol 303:G1279–G1287

    Article  CAS  PubMed  Google Scholar 

  55. Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  56. Jungersted JM, Bomholt J, Bajraktari N, Hansen JS, Klærke DA, Pedersen PA, Hedfalk K, Nielsen KH, Agner T, Hélix-Nielsen C (2013) In vivo studies of aquaporins 3 and 10 in human stratum corneum. Arch Dermatol Res 305:699–704

    Article  CAS  PubMed  Google Scholar 

  57. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, Sluijs PV, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci U S A 103:18344–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karabasil MR, Hasegawa T, Azlina A, Purwanti N, Yao C, Akamatsu T, Tomioka S, Hosoi K (2011) Effects of naturally occurring G103D point mutation of AQP5 on its water permeability, trafficking, and cellular localization in the submandibular gland of rats. Biol Cell 103:69–86

    Article  CAS  PubMed  Google Scholar 

  59. Kasimir-Bauer S, Heubner M, Otterbach F, Kimmig R, Siffert W, Adamzik M (2009) Prognostic relevance of the AQP5–1364C>A polymorphism in primary breast cancer. Mol Med Rep 2:645–650

    Article  CAS  PubMed  Google Scholar 

  60. Kawedia JD, Nieman ML, Boivin GP, Melvin JE, Kikuchi K, Hand AR, Lorenz JN, Menon AG (2007) Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex. Proc Natl Acad Sci U S A 104:3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. King LS, Agre P (1996) Pathophysiology of the aquaporin water channel. Ann Rev Physiol 58:619–618

    Article  CAS  Google Scholar 

  62. King LS, Choi M, Fernandez PC, Cartron JP, Agre P (2001) Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 345:175–179

    Article  CAS  PubMed  Google Scholar 

  63. King LS, Nielsen S, Agre P (1996) Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat. J Clin Invest 97:2183–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, Nishida M, Nishizawa H, Matsuda M, Takahashi M, Hotta K, Nakamura T, Yamashita S, Tochino Y, Matsuzawa Y (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 275:20896–20902

    Article  CAS  PubMed  Google Scholar 

  65. Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, Maeda N, Matsuda M, Ouchi N, Kihara S, Kurachi Y, Funahashi T, Matsuzawa Y (2001) Aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem 276:36251–3660

    Article  CAS  PubMed  Google Scholar 

  66. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269:1814–1826

    Article  CAS  PubMed  Google Scholar 

  67. Kosugi-Tanaka C, Li X, Yao C, Akamatsu T, Kanamori N, Hosoi K (2006) Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells. Biochim Biophys Acta 1763:337–344

    Article  CAS  PubMed  Google Scholar 

  68. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I (1997) Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 272:30329–30333

    Article  CAS  PubMed  Google Scholar 

  69. Krane CM, Fortner CN, Hand AR, McGraw DW, Lorenz JN, Wert SE, Towne JE, Paul RJ, Whitsett JA, Menon AG (2001) Aquaporin 5-deficient mouse lungs are hyper responsive to cholinergic stimulation. Proc Natl Acad Sci U S A 98:14114–14119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krane CM, Zimmerman SL, Staton A, Azmeh R, Moredock K (2007) Single nucleotide polymorphisms in the 3′UTR of the human aquaporin 5 gene affect gene expression. In: The 5th international conference of aquaporin, exploring new functions of aquaporin, Program and Abstract Book., pp 58–59

    Google Scholar 

  71. Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58

    Article  CAS  PubMed  Google Scholar 

  72. Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y (2002) Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51:2915–2921

    Article  CAS  PubMed  Google Scholar 

  73. Laforenza U, Scaffino MF, Gastaldi G (2013) Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One 8:e54474. doi:10.1371/journal.pone.0054474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lambertz N, Hindy NE, Adler C, Rump K, Adamzik M, Keyvani K, Bankfalvi A, Siffert W, Erol Sandalcioglu I, Bachmann HS (2013) Expression of aquaporin 5 and the AQP5 polymorphism A(−1364)C in association with peritumoral brain edema in meningioma patients. J Neurooncol 112:297–305

    Article  CAS  PubMed  Google Scholar 

  75. Larsen HS, Ruus AK, Schreurs O, Galtung HK (2010) Aquaporin 11 in the developing mouse submandibular gland. Eur J Oral Sci 118:9–13

    Article  CAS  PubMed  Google Scholar 

  76. Lebeck J (2014) Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol 52:R165–R178

    Article  CAS  PubMed  Google Scholar 

  77. Lee BH, Gauna AE, Perez G, Park YJ, Pauley KM, Kawai T, Cha S (2013) Autoantibodies against muscarinic type 3 receptor in Sjögren’s syndrome inhibit aquaporin 5 trafficking. PLoS One 8:e53113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci U S A 98:2894–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li X, Azlina A, Karabasil MR, Purwanti N, Hasegawa T, Yao C, Akamatsu T, Hosoi K (2008) Degradation of submandibular gland AQP5 by parasympathetic denervation of chorda tympani and its recovery by cevimeline, an M3 muscarinic agonist. Am J Physiol-Gastrointest Liver Physiol 295:G112–G123

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Liu H, Zhao H, Xu C, Zhao Y, Ma J, Chen ZJ (2013) Association of AQP8 in women with PCOS. Reprod Biomed Online 27:419–422

    Article  CAS  PubMed  Google Scholar 

  81. Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lipschutz JH, Li S, Arisco A, Balkovetz DF (2005) Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells. J Biol Chem 280:3780–3788

    Article  CAS  PubMed  Google Scholar 

  83. Litman T, Søgaad R, Zeuthen T (2009) Ammonia and urea permeability of mammalian aquaporins. In: Beitz E (ed) Handbook of experimental pharmacology (aquaporins), vol 190. Springer, Heidelberg, Germany, pp 327–358

    Google Scholar 

  84. Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  PubMed  Google Scholar 

  85. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lundberg A (1957) Anionic dependence of secretion and secretory potentials in the perfused sublingual gland. Acta Physiol Scand 40:101–112

    Article  CAS  PubMed  Google Scholar 

  87. Ma H, Azuma M, Shearer TR (2005) Degradation of human aquaporin 0 by m-calpain. FEBS Lett 579:6745–6748

    Article  CAS  PubMed  Google Scholar 

  88. Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849

    CAS  PubMed  Google Scholar 

  89. Ma T, Fukuda N, Song Y, Matthay MA, Verkman AS (2000) Lung fluid transport in aquaporin-5 knockout mice. J Clin Invest 105:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153

    Article  CAS  PubMed  Google Scholar 

  91. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–20074

    Article  CAS  PubMed  Google Scholar 

  92. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  CAS  PubMed  Google Scholar 

  95. Maeda N, Funahashi T, Shimomura I (2008) Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9. Nat Clin Pract Endocrinol Metab 4:627–634

    CAS  PubMed  Google Scholar 

  96. Maekawa C, Kitahara T, Kizawa K, Okazaki S, Kamakura T, Horii A, Imai T, Doi K, Inohara H, Kiyama H (2010) Expression and translocation of aquaporin-2 in the endolymphatic sac in patients with Meniere’s disease. J Neuroendocrinol 22:1157–1164

    Article  CAS  PubMed  Google Scholar 

  97. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, Fujinaka H, Yaoita E, Yamamoto T (2010) Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out aquaporin 8. J Proteomics 73:2031–2040

    Article  CAS  PubMed  Google Scholar 

  98. Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membrane Biol 203:119–126

    Article  CAS  Google Scholar 

  99. Mitton KP, Kamiya T, Tumminia SJ, Russell P (1996) Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo. J Biol Chem 271:31803–31806

    Article  CAS  PubMed  Google Scholar 

  100. Mizushima N (2007) Autophagy: process and function. Genes Develop 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  101. Morgan-Bathke M, Harris ZI, Arnett DG, Klein RR, Burd R, Ann DK, Limesand KH (2014) The rapalogue, CCI-779, improves salivary gland function following radiation. PLoS One 9:e113183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Morgan-Bathke M, Hill GA, Harris ZI, Lin HH, Chibly AM, Klein RR, Burd R, Ann DK, Limesand KH (2014) Autophagy correlates with maintenance of salivary gland function following radiation. Sci Rep 4:5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294:630–634

    Article  CAS  PubMed  Google Scholar 

  104. Morishita Y, Matsuzaki T, Hara-Chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morris RG, Uchida S, Brooks H, Knepper MA, Chou CL (2005) Altered expression profile of transporters in the inner medullary collecting duct of aquaporin-1 knockout mice. Am J Physiol Renal Physiol 289:F194–F199

    Article  CAS  PubMed  Google Scholar 

  106. Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, Agre P (1995) Water channel properties of major intrinsic protein of lens. J Biol Chem 270:9010–9016

    Article  CAS  PubMed  Google Scholar 

  107. Murakami M, Murdiastuti K, Hosoi K, Hill AE (2006) AQP and the control of fluid transport in a salivary gland. J Membr Biol 210:91–103

    Article  CAS  PubMed  Google Scholar 

  108. Murakami M, Shachar-Hill B, Steward MC, Hill AE (2001) The paracellular component of water flow in the rat submandibular salivary gland. J Physiol 537:899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  110. Murdiastuti K (2005) Point mutation in a gene for aquaporin 5, an exocrine gland-type water channel, and its effects on the salivary gland function in rats. In: Dissertation submitted to the Graduate School of Oral Sciences, The University of Tokushima Graduate School for the Degree of Doctor of Philosophy in Dentistry

    Google Scholar 

  111. Murdiastuti K, Miki O, Yao C, Parvin MN, Kosugi C, Akamatsu T, Kanamori N, Hosoi K (2002) Divergent expression and localization of aquaporin 5, an exocrine-type water channel, in the submandibular gland of Sprague–Dawley rats. Pflügers Arch-Eur J Physiol 445:405–412

    Article  Google Scholar 

  112. Murdiastuti K, Purwanti N, Karabasil MR, Li X, Yao C, Akamatsu T, Kanamori N, Hosoi K (2006) A naturally occurring point mutation in the rat aquaporin 5 gene, influencing its protein production by and secretion of water from salivary glands. Am J Physiol-Gastrointest Liver Physiol 291:G1081–G1088

    Article  CAS  PubMed  Google Scholar 

  113. Nakahari T, Imai Y (1998) Transient swelling of salivary acinus induced by acetylcholine stimulation: water secretion pathway in rat submandibular gland. J Membr Biol 161:287–296

    Article  CAS  PubMed  Google Scholar 

  114. Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548

    CAS  PubMed  Google Scholar 

  115. Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol-Gastrointest Liver Physiol 263:G823–G837

    CAS  Google Scholar 

  116. Nejsum LN, Kwon TH, Jensen UB, Fumagalli O, Frøkiaer J, Krane CM, Menon AG, King LS, Agre PC, Nielsen S (2002) Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci U S A 99:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Németh-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–6782

    Article  PubMed  Google Scholar 

  118. Nguyen KH, Brayer J, Cha S, Diggs S, Yasunari U, Hilal G, Peck AB, Humphreys-Beher MG (2000) Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum 43:2297–306

    Article  CAS  PubMed  Google Scholar 

  119. Nicchia GP, Ficarella R, Rossi A, Giangreco I, Nicolotti O, Carotti A, Pisani F, Estivill X, Gasparini P, Svelto M, Frigeri A (2011) D184E mutation in aquaporin-4 gene impairs water permeability and links to deafness. Neuroscience 197:80–88

    Article  CAS  PubMed  Google Scholar 

  120. Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SBH, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T (2009) Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Physiol-Cell Physiol 297:C1368–C1378

    Article  CAS  PubMed  Google Scholar 

  121. Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684

    Article  CAS  PubMed  Google Scholar 

  122. Pallone TL, Edwards A, Ma T, Silldorff EP, Verkman AS (2000) Requirement of aquaporin-1 for NaCl driven water transport across descending vasa recta. J Clin Invest 105:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Papadopoulos MC, Verkman AS (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Bol Chem 280:13906–13912

    Article  CAS  Google Scholar 

  125. Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T, Kanamori N, Hosoi K (2005) Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide (VIP) in the Brunner’s gland of the rat duodenum. Am J Physiol-Gastrointest Liver Physiol 288:G1283–G1291

    Article  CAS  PubMed  Google Scholar 

  126. Parvin MN, Tsumura K, Akamatsu T, Kanamori N, Hosoi K (2002) Expression and localization of AQP5 in the stomach and duodenum of the rat. Biochim Biophys Acta Mol Cell Res 1542:116–124

    Article  CAS  Google Scholar 

  127. Pisano MM, Chepelinsky AB (1992) Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 11:981–990

    Article  Google Scholar 

  128. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  129. Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P (1994) Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    Article  CAS  PubMed  Google Scholar 

  130. Price HD, Thompson TE (1969) Properties of liquid bilayer membranes separating two aqueous phases: temperature dependence of water permeability. J Mol Biol 41:443–457

    Article  CAS  PubMed  Google Scholar 

  131. Puliyanda DP, Ward DT, Baum MA, Hammond TG, Harris HW Jr (2003) Calpain-mediated AQP2 proteolysis in inner medullary collecting duct. Biochem Biophys Res Commun 303:52–58

    Article  CAS  PubMed  Google Scholar 

  132. Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912

    Article  CAS  PubMed  Google Scholar 

  133. Redwood WR, Haydon DA (1969) Influence of temperature and membrane composition on the water permeability of lipid bilayers. J Theor Biol 22:1–8

    Article  CAS  PubMed  Google Scholar 

  134. Ripoche P, Gane P, Le Pennec PY, Daniels G, Cartron JP, Bailly P (2002) AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J Biol Chem 277:45854–45859

    Article  PubMed  CAS  Google Scholar 

  135. Rojek A, Füchtbauer EM, Füchtbauer A, Jelen S, Malmendal A, Fenton RA, Nielsen S (2013) Liver-specific aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. Am J Physiol Gastrointest Liver Physiol 304:G501–G515

    Article  CAS  PubMed  Google Scholar 

  136. Romanenko V, Nakamoto T, Srivastava A, Melvin JE, Begenisich T (2006) Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J Biol Chem 281:27964–27972

    Article  CAS  PubMed  Google Scholar 

  137. Rosenberg PA, Finkelstein A (1978) Water permeability of gramicidin A-treated lipid bilayer membranes. J Gen Physiol 72:341–350

    Article  CAS  PubMed  Google Scholar 

  138. Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, Hebert SC, Harris HW (1998) Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol-Renal Physiol 274:F978–F985

    CAS  Google Scholar 

  139. Satoh K, Seo Y, Matsuo S, Karabasil MR, Matsuki-Fukushima M, Nakahari T, Hosoi K (2012) Roles of AQP5/AQP5-G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells. Pflügers Arch-Eur J Physiol 464:375–389

    Article  CAS  Google Scholar 

  140. Schüle R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM (1990) Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61:497–504

    Article  PubMed  Google Scholar 

  141. Segawa A (1994) Tight junctional permeability in living cells: dynamic changes directly visualized by confocal laser microscopy. J Electron Microsc (Tokyo) 43:290–298

    CAS  Google Scholar 

  142. Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K, Kuszak J, Donoviel D, Lilleberg S, Friedrich G, Zambrowicz B (2001) Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genomics 7:179–186

    Article  CAS  PubMed  Google Scholar 

  143. Sidhaye VK, Güler AD, Schweitzer KS, D’Alessio F, Caterina MJ, King LS (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci U S A 103:4747–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sidhaye V, Hoffert JD, King LS (2005) cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J Biol Chem 280:3590–3596

    Article  CAS  PubMed  Google Scholar 

  145. Sohara E, Rai T, Sasaki S, Uchida S (2006) Physiological roles of AQP7 in the kidney: lessons from AQP7 knockout mice. Biochim Biophys Acta 1758:1106–1110

    Article  CAS  PubMed  Google Scholar 

  146. Stein B, Baldwin AS Jr, Ballard DW, Greene WC, Angel P, Herrlich P (1993) Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12:3879–3891

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Steinfeld SD, Appelboom T, Delporte C (2002) Treatment with infliximab restores normal aquaporin 5 distribution in minor salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum 46:2249–2251

    Article  PubMed  Google Scholar 

  148. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren’s syndrome patients. Lab Invest 81:143–148

    Article  CAS  PubMed  Google Scholar 

  149. Steinfeld SD, Delporte C (2002) Distribution of salivary aquaporin-5 in Sjögren’s syndrome. (Letter to editor and authors reply by Waterman, SA, Beroukas D (pp 1778) and Groneberg DA, Peiser C, Fischer A (pp 1778–1779)). Lancet 359:1777–1778

    Article  PubMed  Google Scholar 

  150. Steinfeld SD, Demols P, Salmon I, Kiss R, Appelboom T (2001) Infliximab in patients with primary Sjögren’s syndrome: a pilot study. Arthritis Rheum 44:2371–2375

    Article  CAS  PubMed  Google Scholar 

  151. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  152. Su W, Guan X, Zhang D, Sun M, Yang L, Yi F, Hao F, Feng X, Ma T (2013) Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol 11:88. doi:10.1186/1477-7827-11-88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Suzuki Y, Ohtsuyama M, Samman G, Sata F, Sato K (1991) Ionic basis of methacholine-induced shrinkage of dissociated eccrine clear cells. J Membr Biol 123:33–41

    Article  CAS  PubMed  Google Scholar 

  154. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  155. Towne JE, Krane CM, Bachurski CJ, Menon AG (2001) Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. J Biol Chem 276:18657–18664

    Article  CAS  PubMed  Google Scholar 

  156. Tsubota K, Hirai S, King LS, Agre P, Ishida N (2001) Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren’s syndrome. Lancet 357:688–689

    Article  CAS  PubMed  Google Scholar 

  157. Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  158. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol-Renal Physiol 277:F685–F696

    CAS  Google Scholar 

  159. van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652

    PubMed  PubMed Central  Google Scholar 

  160. Varadaraj K, Kumari SS, Mathias RT (2010) Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: effects on lens transparency. Exp Eye Res 91:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vege S, Nance S, Kavitsky D, Li X, Horn T, Meny G, Westhoff CM (2013) An AQP1 allele associated with co(a-b-) phenotype. Immunohematology 29:1–4

    CAS  PubMed  Google Scholar 

  162. Verkman AS (2005) Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 155:31–55

    Article  CAS  PubMed  Google Scholar 

  163. Verkman AS, Hara-Chikuma M, Paradopoulos MC (2008) Aquaporins—new players in cancer biology. J Mol Med 86:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wellner RB, Baum BJ (2001) Polarized sorting of aquaporins 5 and 8 in stable MDCK-II transfectants. Biochem Biophys Res Commun 285:1253–1258

    Article  CAS  PubMed  Google Scholar 

  165. Wellner RB, Hong S, Cotrim AP, Swaim WD, Baum BJ (2005) Modifying the NH2 and COOH termini of aquaporin-5: effects on localization in polarized epithelial cells. Tissue Eng 11:1449–1458

    Article  CAS  PubMed  Google Scholar 

  166. Wellner RB, Redman RS, Swaim WD, Baum BJ (2006) Further evidence for AQP8 expression in the myoepithelium of rat submandibular and parotid glands. Pflugers Arch 451:642–645

    Article  CAS  PubMed  Google Scholar 

  167. Woo J, Chae YK, Jang SJ, Kim MS, Baek JH, Park JC, Trink B, Ratovitski E, Lee T, Park B, Park M, Kang JH, Soria JC, Lee J, Califano J, Sidransky D, Moon C (2008) Membrane trafficking of AQP5 and cAMP dependent phosphorylation in bronchial epithelium. Biochem Biophys Res Commun 366:321–327

    Article  CAS  PubMed  Google Scholar 

  168. Woo J, Lee J, Kim MS, Jang SJ, Sidransky D, Moon C (2008) The effect of aquaporin 5 overexpression on the Ras signaling pathway. Biochem Biophys Res Commun 367:291–298

    Article  CAS  PubMed  Google Scholar 

  169. Yadav BK, Oh SY, Kim NK, Shin BS (2014) Association of rs2075575 and rs9951307 polymorphisms of AQP-4 gene with leukoaraiosis. J Stroke Cerebrovasc Dis 23:1199–206

    Article  PubMed  Google Scholar 

  170. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS (1999) Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol 276:C76–C81

    CAS  PubMed  Google Scholar 

  171. Yang F, Kawedia JD, Menon AG (2003) Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J Biol Chem 278:32173–32180

    Article  CAS  PubMed  Google Scholar 

  172. Yao C, Purwanti N, Karabasil MR, Azlina A, Javkhlan P, Hasegawa T, Akamatsu T, Hosoi T, Ozawa K, Hosoi K (2010) Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappa B and p-c-Jun/c-Fos. Am J Pathol 177:724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yasui M, Hazama A, Kwon T-H, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  PubMed  Google Scholar 

  174. Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  CAS  PubMed  Google Scholar 

  175. Zeng W, Lee MG, Muallem S (1997) Membrane-specific regulation of Cl channels by purinergic receptors in rat submandibular gland acinar and duct cells. J Biol Chem 272:32956–32965

    Article  CAS  PubMed  Google Scholar 

  176. Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this review are based on studies conducted in the Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University (formerly, Institute of Health Biosciences, The University of Tokushima), Japan. The author appreciates deeply the laboratory staff and graduate students who participated in the project, as well as the Ministry of Education, Culture, Sports, Science, and Technology, Japan, for having supported the project for many years. The author would like to acknowledge Professor Y. Seo, Dokkyo Medical University School of Medicine; Professor K. Inenaga, Kyushu Dental University; Dr. M. Murakami, National Institute for Physiological Sciences; and Dr. T. Nakahari, Osaka Medical College, for collaboration in some of the studies cited and for thoughtful discussion regarding the water transport mechanism. The author also expresses his gratitude to Dr. Larry Frye for reviewing this article and gives thanks to all other people who contributed to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Hosoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoi, K. Physiological role of aquaporin 5 in salivary glands. Pflugers Arch - Eur J Physiol 468, 519–539 (2016). https://doi.org/10.1007/s00424-015-1749-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1749-6

Keywords

Navigation