Skip to main content

Advertisement

Log in

Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

To investigate the involvement of transdifferentiation and dedifferentiation phenomena inside atherosclerotic plaques, we analyzed the differentiation status of vascular smooth muscle cells (VSMC) in vitro and in vivo. Forty normal autoptic and 20 atherosclerotic carotid endarterectomy specimens as well as 20 specimens of infrarenal and suprarenal aortae were analyzed for the expression of cytokeratins 7 and 18 and β-catenin as markers (epithelial transdifferentiation) as well as CD31 and CD34 (embryonic dedifferentiation) by conventional and double fluorescence immunohistochemistry and reverse transcription polymerase chain reaction. Looking at these markers, additional cell culture experiments with human aortic (HA)-VSMC were done under stimulation with IL-1β, IL-6, and TNF-α. Cytokeratins and β-catenin were expressed significantly higher in atherosclerotic than in normal carotids primarily localized in VSMC of the shoulder/cap region of atherosclerotic lesions. Additionally, heterogeneous cellular coexpression of CD31 and/or CD34 was observed in subregions of progressive atherosclerotic lesions by VSMC. The expression of those differentiation markers by stimulated HA-VSMC showed a time and cytokine dependency in vitro. Our findings show that (1) VSMC of progressive atheromas have the ability of differentiation, (2) that transdifferentiation and dedifferentiation phenomena are topographically diverse localized in the subregions of advanced atherosclerotic lesions, and (3) are influenced by inflammatory cytokines like IL-1β, IL-6, and TNF-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  2. Neureiter D, Heuschmann P, Stintzing S et al (2003) Detection of Chlamydia pneumoniae but not of Helicobacter pylori in symptomatic atherosclerotic carotids associated with enhanced serum antibodies, inflammation and apoptosis rate. Atherosclerosis 168:153–162

    Article  PubMed  CAS  Google Scholar 

  3. Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339

    Article  PubMed  CAS  Google Scholar 

  4. Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256

    Article  PubMed  CAS  Google Scholar 

  5. Owens GK (1998) Molecular control of vascular smooth muscle cell differentiation. Acta Physiol Scand 164:623–635

    PubMed  CAS  Google Scholar 

  6. Shanahan CM, Weissberg PL (1999) Smooth muscle cell phenotypes in atherosclerotic lesions. Curr Opin Lipidol 10:507–513

    Article  PubMed  CAS  Google Scholar 

  7. Shanahan CM, Weissberg PL (1998) Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 18:333–338

    PubMed  CAS  Google Scholar 

  8. Tintut Y, Alfonso Z, Saini T et al (2003) Multilineage potential of cells from the artery wall. Circulation 108:2505–2510

    Article  PubMed  Google Scholar 

  9. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  10. Neureiter D, Herold C, Ocker M (2006) Gastrointestinal cancer—only a deregulation of stem cell differentiation? Int J Mol Med 17:483–489 Review

    PubMed  CAS  Google Scholar 

  11. Neureiter D, Zopf S, Dimmler A et al (2005) Different capabilities of morphological pattern formation and its association with the expression of differentiation markers in a xenograft model of human pancreatic cancer cell lines. Pancreatology 5:387–397

    Article  PubMed  CAS  Google Scholar 

  12. Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    Article  PubMed  CAS  Google Scholar 

  13. Iyemere VP, Proudfoot D, Weissberg PL et al (2006) Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 260:192–210

    Article  PubMed  CAS  Google Scholar 

  14. Moiseeva EP (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52:372–386

    Article  PubMed  CAS  Google Scholar 

  15. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 92:1355–1374

    PubMed  CAS  Google Scholar 

  16. Hatano S (1976) Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ 54:541–553

    PubMed  CAS  Google Scholar 

  17. Negoescu A, Labat-Moleur F, Lorimier P et al (1994) F(ab) secondary antibodies: a general method for double immunolabeling with primary antisera from the same species. Efficiency control by chemiluminescence. J Histochem Cytochem 42:433–437

    PubMed  CAS  Google Scholar 

  18. Kirkeby S, Thomsen CE (2005) Quantitative immunohistochemistry of fluorescence labelled probes using low-cost software. J Immunol Methods 301:102–113

    Article  PubMed  CAS  Google Scholar 

  19. Neureiter D, Zopf S, Leu T et al (2007) Apoptosis, proliferation and differentiation patterns are influenced by Zebularine and SAHA in pancreatic cancer models. Scand J Gastroenterol 42:103–116

    Article  PubMed  CAS  Google Scholar 

  20. Barber RD, Harmer DW, Coleman RA et al (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389–395

    Article  PubMed  CAS  Google Scholar 

  21. Bayliss J, Maguire JA, Bailey M et al (2008) Increased vascular endothelial growth factor mRNA in endomyocardial biopsies from allografts demonstrating severe acute rejection: a longitudinal study. Transpl Immunol 18:264–274

    Article  PubMed  CAS  Google Scholar 

  22. Hansson GK, Libby P, Schonbeck U et al (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Article  PubMed  CAS  Google Scholar 

  23. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  24. Metharom P, Liu C, Wang S et al (2008) Myeloid lineage of high proliferative potential human smooth muscle outgrowth cells circulating in blood and vasculogenic smooth muscle-like cells in vivo. Atherosclerosis 198:29–38

    Article  PubMed  CAS  Google Scholar 

  25. Bader BL, Jahn L, Franke WW (1988) Low level expression of cytokeratins 8, 18 and 19 in vascular smooth muscle cells of human umbilical cord and in cultured cells derived therefrom, with an analysis of the chromosomal locus containing the cytokeratin 19 gene. Eur J Cell Biol 47:300–319

    PubMed  CAS  Google Scholar 

  26. Bar H, Bea F, Blessing E et al (2001) Phosphorylation of cytokeratin 8 and 18 in human vascular smooth muscle cells of atherosclerotic lesions and umbilical cord vessels. Basic Res Cardiol 96:50–58

    Article  PubMed  CAS  Google Scholar 

  27. Bar H, Wende P, Watson L et al (2002) Smoothelin is an indicator of reversible phenotype modulation of smooth muscle cells in balloon-injured rat carotid arteries. Basic Res Cardiol 97:9–16

    Article  PubMed  Google Scholar 

  28. Bauriedel G, Schewe K, Windstetter U et al (1991) Differential cytokeratin expression in cultivated smooth muscle cells of primary and re-stenosed plaque tissue? Vasa Suppl 32:216–219

    PubMed  CAS  Google Scholar 

  29. Denger S, Jahn L, Wende P et al (1999) Expression of monocyte chemoattractant protein-1 cDNA in vascular smooth muscle cells: induction of the synthetic phenotype: a possible clue to SMC differentiation in the process of atherogenesis. Atherosclerosis 144:15–23

    Article  PubMed  CAS  Google Scholar 

  30. Glukhova MA, Shekhonin BV, Kruth H et al (1991) Expression of cytokeratin 8 in human aortic smooth muscle cells. Am J Physiol 261:72–77

    PubMed  CAS  Google Scholar 

  31. Jahn L, Franke WW (1989) High frequency of cytokeratin-producing smooth muscle cells in human atherosclerotic plaques. Differentiation 40:55–62

    Article  PubMed  CAS  Google Scholar 

  32. Jahn L, Kreuzer J, von Hodenberg E et al (1993) Cytokeratins 8 and 18 in smooth muscle cells. Detection in human coronary artery, peripheral vascular, and vein graft disease and in transplantation-associated arteriosclerosis. Arterioscler Thromb 13:1631–1639

    PubMed  CAS  Google Scholar 

  33. Garcia-Ramirez M, Martinez-Gonzalez J, Juan-Babot JO et al (2005) Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol 25:2398–2403

    Article  PubMed  CAS  Google Scholar 

  34. Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89:379–383

    Article  PubMed  CAS  Google Scholar 

  35. Blindt R, Vogt F, Lamby D et al (2002) Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J Vasc Res 39:340–352

    Article  PubMed  CAS  Google Scholar 

  36. Slomp J, Gittenberger-de Groot AC, Glukhova MA et al (1997) Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 17:1003–1009

    PubMed  CAS  Google Scholar 

  37. Glukhova MA, Frid MG, Koteliansky VE (1990) Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J Biol Chem 265:13042–13046

    PubMed  CAS  Google Scholar 

  38. Liu C, Nath KA, Katusic ZS et al (2004) Smooth muscle progenitor cells in vascular disease. Trends Cardiovasc Med 14:288–293

    Article  PubMed  CAS  Google Scholar 

  39. Johansson B, Eriksson A, Virtanen I et al (1997) Intermediate filament proteins in adult human arteries. Anat Rec 247:439–448

    Article  PubMed  CAS  Google Scholar 

  40. Campean V, Neureiter D, Nonnast-Daniel B et al (2007) CD40-CD154 expression in calcified and non-calcified coronary lesions of patients with chronic renal failure. Atherosclerosis 190:156–166

    Article  PubMed  CAS  Google Scholar 

  41. Matsumura G, Miyagawa-Tomita S, Shin'oka T et al (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108:1729–1734

    Article  PubMed  Google Scholar 

  42. Simper D, Stalboerger PG, Panetta CJ et al (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204

    Article  PubMed  CAS  Google Scholar 

  43. Yeh ET, Zhang S, Wu HD et al (2003) Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108:2070–2073

    Article  PubMed  Google Scholar 

  44. Bea F, Bar H, Watson L et al (2000) Cardiac alpha-actin in smooth muscle cells: detection in umbilical cord vessels and in atherosclerotic lesions. Basic Res Cardiol 95:106–113

    Article  PubMed  CAS  Google Scholar 

  45. Amore B, Chiavegato A, Paulon T et al (1996) Atherosclerosis resistance in rats correlates with lack of expansion of an immature smooth muscle cell population. J Vasc Res 33:442–453

    PubMed  CAS  Google Scholar 

  46. Trosheva M, Dikranian K, Nikolov S (1996) Expression of cytoskeletal proteins and ATPase activity in bovine femoral artery and vein intima. Histol Histopathol 11:335–342

    PubMed  CAS  Google Scholar 

  47. Roberts N, Jahangiri M, Xu Q (2005) Progenitor cells in vascular disease. J Cell Mol Med 9:583–591

    Article  PubMed  Google Scholar 

  48. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    Article  PubMed  CAS  Google Scholar 

  49. Medbury HJ, Tarran SL, Guiffre AK et al (2008) Monocytes contribute to the atherosclerotic cap by transformation into fibrocytes. Int Angiol 27:114–123

    PubMed  CAS  Google Scholar 

  50. Torsney E, Mandal K, Halliday A et al (2007) Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis 191:259–264

    Article  PubMed  CAS  Google Scholar 

  51. Bobryshev YV, Lord RS, Watanabe T et al (1998) The cell adhesion molecule E-cadherin is widely expressed in human atherosclerotic lesions. Cardiovasc Res 40:191–205

    Article  PubMed  CAS  Google Scholar 

  52. Uglow EB, Slater S, Sala-Newby GB et al (2003) Dismantling of cadherin-mediated cell–cell contacts modulates smooth muscle cell proliferation. Circ Res 92:1314–1321

    Article  PubMed  CAS  Google Scholar 

  53. Wang X, Xiao Y, Mou Y et al (2002) A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res 90:340–347

    Article  PubMed  CAS  Google Scholar 

  54. George SJ, Beeching CA (2006) Cadherin:catenin complex: a novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis 188:1–11

    Article  PubMed  CAS  Google Scholar 

  55. George SJ, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14:100–105

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Adhikari N, Li Q et al (2004) LDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 287:H2376–H2383

    Article  PubMed  CAS  Google Scholar 

  57. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  58. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    Article  PubMed  CAS  Google Scholar 

  59. Ross R, Glomset J, Kariya B et al (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A 71:1207–1210

    Article  PubMed  CAS  Google Scholar 

  60. Kim HR, Upadhyay S, Li G et al (1995) Platelet-derived growth factor induces apoptosis in growth-arrested murine fibroblasts. Proc Natl Acad Sci U S A 92:9500–9504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Grant from the University of Erlangen–Nuremberg (ELAN-Fond 98.08.14.1) and in part by the IZKF Erlangen (A11). The expert technical assistance of S. Söllner, Gudrun Hülsmann-Volkert, and W. Wurm is gratefully acknowledged.

Conflicts of interest statement

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Stintzing.

Additional information

Sebastian Stintzing and Matthias Ocker contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stintzing, S., Ocker, M., Hartner, A. et al. Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows Arch 455, 171–185 (2009). https://doi.org/10.1007/s00428-009-0800-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0800-4

Keywords

Navigation