Skip to main content

Advertisement

Log in

Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

The transcription factor nuclear factor-E2-related factor-2 (Nrf2) inhibits lipid accumulation and oxidative stress in the liver by interfering with lipogenic pathways and inducing antioxidative stress genes.

Methods

The involvement of Nrf2 in defense against the development of steatohepatitis was studied in an experimental model induced by an atherogenic plus high-fat (Ath + HF) diet. Wild-type (WT) and Nrf2-null mice were fed the diet. Their specimens were analyzed for pathology as well as for the expression levels of genes involved in fatty acid metabolism and those involved via the Nrf2 transcriptional pathway.

Results

In Nrf2-null mice fed the diet, steatohepatitis developed rapidly, leading to precirrhosis. The Ath + HF diet increased hepatic triglyceride levels and changed fatty acid composition in both mouse groups. However, oleic acid (C18:1 n-9) predominated in the livers of Nrf2-null mice. Correlating well with the pathology, the mRNA levels of the factors involved in fatty acid metabolism (Lxr, Srebp-1a, 1c, Acc-1, Fas, Scd-1, and Fatty acid transporting peptides 1, 3, 4), the inflammatory cytokine genes (Tnf-α and IL-), and the fibrogenesis-related genes (Tgf-β1 and α-Sma) were significantly increased in the livers of Nrf2-null mice fed the diet, compared with the levels of these factors in matched WT mice. Oxidative stress was significantly increased in the livers of Nrf2-null mice fed the diet. This change was closely associated with the decreased levels of antioxidative stress genes.

Conclusions

Nrf2 deletion leads to the rapid onset and progression of steatohepatitis induced by an Ath + HF diet, through both up-regulation of co-regulators of fatty acid metabolism and down-regulation of oxidative metabolism regulators in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Acc-1:

Acetyl-CoA carboxylase

Aco:

Acyl-CoA oxidase

α-Sma:

Alpha-smooth muscle actin

Ath + HF diet:

Atherogenic plus high-fat diet

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

Cpt:

Carnitine palmitoyltransferase

Elovl6:

Elongation of long-chain fatty acids family member 6

Fas:

Fatty acid synthase

Fatp:

Fatty acid transport protein

γ-Gcs:

γ-Glutamyl cystein synthetase

GSH:

Glutathione

Gst:

Glutathione S-transferase

4-HNE:

4-Hydroxy-2-nonenal

Keap1:

Kelch-like Ech-associated protein 1

L-Fabp:

Liver fatty acid binding protein

Lxr:

Liver X receptor

NASH:

Non-alcoholic steatohepatitis

Nrf2:

Nuclear factor-E2-related factor-2

Nqo1:

NAD(P)H: quinone oxidoreductase 1

Ppar:

Peroxisome proliferators activated receptor

ROS:

Reactive oxygen species

Scd-1:

Stearoyl-CoA desaturase-1

Srebp:

Sterol regulatory element-binding protein

Tgf:

Transforming growth factor

WT:

Wild type

References

  1. Vuppalanchi R, Naga C. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology. 2009;49:306–17.

    Article  PubMed  Google Scholar 

  2. Torres DM, Harrison SA. Diagnosis and therapy of nonalcoholic steatohepatitis. Gastroenterology. 2008;134:1682–98.

    Article  PubMed  CAS  Google Scholar 

  3. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and metabolic syndrome. Hepatology. 2003;37:917–23.

    Article  PubMed  Google Scholar 

  4. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.

    PubMed  CAS  Google Scholar 

  5. Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol. 2005;42:585–91.

    Article  PubMed  CAS  Google Scholar 

  6. Sumida Y, Nakashima T, Yoh T, Furutani M, Hirohama A, Kakisaka Y, et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol. 2003;38:32–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kotronen A, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H. Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia. 2008;51:130–8.

    Article  PubMed  CAS  Google Scholar 

  8. Fromenty B, Robin MA, Igoudili A, Mansouri A, Pessayre D. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 2004;30:121–38.

    Google Scholar 

  9. Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, et al. Mitochondrial adaptations to obesity related oxidant stress. Arch Biochem Biophys. 2000;378:259–68.

    Article  PubMed  CAS  Google Scholar 

  10. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology. 2004;40:185–94.

    Article  PubMed  CAS  Google Scholar 

  11. Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol. 2008;48:300–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang DD, Hannink M. Distinct cysteine in Keap1 are required for Keap1-dependent ubiquitination on Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23:8137–51.

    Article  PubMed  CAS  Google Scholar 

  13. Kwak MK, Itoh K, Yamamoto M, Sutter TR, Kensler TW. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dithiole-3-thione. Mol Med. 2001;7:135–45.

    PubMed  CAS  Google Scholar 

  14. Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, et al. Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am J Physiol Gastrointest Liver Pysiol. 2008;295:G735–47.

    Article  CAS  Google Scholar 

  15. Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, et al. Nrf2 counteracts cholestatic liver injury via stimulation of hepatic defense systems. Biochem Biophys Res Commun. 2009;389:431–6.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed high-fat diet. J Pharmacol Exp Ther. 2008;325:655–64.

    Article  PubMed  CAS  Google Scholar 

  17. Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-Imidazolide. Eur J Pharmacol. 2009;620:138–44.

    Article  PubMed  CAS  Google Scholar 

  18. Kitteringham N, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, et al. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defense and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteomics. 2010;73:1612–31.

    Article  PubMed  CAS  Google Scholar 

  19. Matsuzawa N, Takamura T, Kurita S, Nisu H, Ota T, Ando H, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007;46:1392–403.

    Article  PubMed  CAS  Google Scholar 

  20. Sugimoto H, Okada K, Shoda J, Warabi E, Ishige K, Ueda T, et al. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G283–94.

    Article  PubMed  CAS  Google Scholar 

  21. Gotoh N, Nagao K, Onoda S, Shirouchi B, Furuya K, Nagai T, et al. Effects of three different highly purified n-3 series highly unsaturated fatty acids on lipid metabolism in C57BL/KsJ-db/db mice. J Agric Food Chem. 2009;57:11047–54.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13:1193–202.

    Article  PubMed  CAS  Google Scholar 

  23. Matsuzaka T, Shimano H. Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med. 2009;87:379–84.

    Article  PubMed  CAS  Google Scholar 

  24. Maruyama A, Tsukamoto S, Nishikawa K, Yoshida A, Harada N, Motojima K, et al. Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements. Arch Biochem Biophys. 2008;477:139–45.

    Article  PubMed  CAS  Google Scholar 

  25. Schwenk RW, Holloway GP, Luiken JJFP, Bonen A, Glatz JFC. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids. 2010;82:149–54.

    Article  PubMed  CAS  Google Scholar 

  26. Tomita K, Oike Y, Teratani T, Taguchi T, Noguchi M, Suzuki T, et al. Hepatic adipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice. Hepatology. 2008;48:458–73.

    Article  PubMed  CAS  Google Scholar 

  27. Adams LA, Lymp JF, Sauver JS, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population based cohort study. Gastroenterology. 2005;129:113–21.

    Article  PubMed  Google Scholar 

  28. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–38.

    Article  PubMed  CAS  Google Scholar 

  29. Araya J, Rodrigo R, Vidla LA, Thielemann L, Orellana M, Pettinelli P, et al. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci. 2004;106:635–43.

    Article  PubMed  CAS  Google Scholar 

  30. Moriya K, Todoroki T, Tsutsumi T, Fujie H, Shintani Y, Miyoshi H, et al. Increase in the concentration of carbon 18 monounsaturated fatty acids in the liver with hepatitis C: analysis in transgenic mice and humans. Biochem Biophys Res Commun. 2001;281:1207–12.

    Article  PubMed  CAS  Google Scholar 

  31. Feldstein A, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol. 2003;39:978–83.

    Article  PubMed  CAS  Google Scholar 

  32. Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA. 2006;103:8552–7.

    Article  PubMed  CAS  Google Scholar 

  33. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002;99:11482–6.

    Article  PubMed  CAS  Google Scholar 

  34. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007;6:484–96.

    Article  PubMed  CAS  Google Scholar 

  35. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, Garcia-Mediavilla MV, Fernandez-Beremejo M, Lazano-Rodriguez T, et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60:1394–402.

    Article  PubMed  CAS  Google Scholar 

  36. Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D, et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem. 2010;285:9292–300.

    Article  PubMed  CAS  Google Scholar 

  37. Chartoumpekis DV, Ziros PG, Psyrogiannis AI, Papavassilou AG, Kyriazopoulou VE, Sykiotis GP, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60:2465–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Shoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, K., Warabi, E., Sugimoto, H. et al. Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J Gastroenterol 48, 620–632 (2013). https://doi.org/10.1007/s00535-012-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0659-z

Keywords

Navigation