Skip to main content

Advertisement

Log in

Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

We previously reported that desflurane induced airway contraction via antidromic tachykinin release from sensory C-fibers. Here, we investigated the effect of desflurane on airway lung resistance (R L) using specific receptor antagonists in C-fibers. Young guinea pigs were anesthetized and their tracheas were cannulated with an endotracheal tube via a tracheotomy. A Fleisch pneumotachograph and a differential transducer were used to monitor respiratory flow rate, intrapleural pressure, and airway pressure, and R L was calculated and recorded. A transient receptor potential A1 (TRPA1) or a transient receptor potential V1 (TRPV1) selective antagonist of sensory C-fibers, i.e., HC030031 or BCTC, was administered before the exposure to desflurane. In an additional experiment, tachykinin receptor of airway smooth muscles was antagonized only by the neurokinin-2 receptor antagonist MEN-10376 before the exposure to desflurane. HC030031 completely inhibited both the first and the second contractile responses induced by desflurane, whereas BCTC had little effect. MEN-10376 also significantly and substantially diminished the contractile response. Desflurane contracts the airway in untreated guinea pigs mainly by activating irritant gas receptor TRPA1 of afferent C-fibers, resulting in the release of contractile tachykinins such as neurokinin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Yamakage M, Hirshman CA. Volatile anesthetics and airway smooth muscle function. Curr Opin Anaesthesiol. 1994;7:531–535.

    Article  Google Scholar 

  2. Brichant JF, Gunst SJ, Warner DO, Rehder K. Halothane, enß urane, and isoß urane depress the peripheral vagal motor pathway in isolated canine tracheal smooth muscle. Anesthesiology. 1991;74:325–332.

    Article  CAS  PubMed  Google Scholar 

  3. Yamakage M. Direct inhibitory mechanisms of halothane on canine tracheal smooth muscle contraction. Anesthesiology. 1992;77:546–553.

    Article  CAS  PubMed  Google Scholar 

  4. Wiklund CU, Lindsten U, Lim S, Lindahl SG. Interactions of volatile anesthetics with cholinergic, tachykinin, and leukotriene mechanisms in isolated guinea pig bronchial smooth muscle. Anesth Analg. 2002;95:1650–1655.

    Article  CAS  PubMed  Google Scholar 

  5. Mercier FJ, Naline E, Bardou M, Georges O, Denjean A, Benhamou D, Advenier C. Relaxation of proximal and distal isolated human bronchi by halothane, isoß urane, and desß urane. Eur Respir J. 2002;20:286–292.

    Article  CAS  PubMed  Google Scholar 

  6. Dikmen Y, Eminoglu E, Salihoglu Z, Demiroluk S. Pulmonary mechanics during isoß urane, sevoß urane, and desß urane anaesthesia. Anaesthesia. 2003;58:745–748.

    Article  CAS  PubMed  Google Scholar 

  7. von Ungern·Sternberg BS, Saudan S, Petak F, Hantos Z, Habre W. Desß urane but not sevoß urane impairs airway and respiratory tissue mechanics in children with susceptible airways. Anesthesiology. 2008;108:216–224.

    Article  Google Scholar 

  8. Satoh J-I, Yamakage M, Kobayashi T, Tohse N, Watanabe H, Namiki A. Desß urane but not sevoß urane can increase lung resistance via tachykinin pathways. Br J Anaesth. 2009;102:704–713.

    Article  CAS  PubMed  Google Scholar 

  9. Iwasaki S, Yamakage M, Satoh J-I, Namiki A. Different inhibitory effects of sevoß urane on hyperreactive airway smooth muscle contractility in ovalbumin-sensitized and chronic cigarettesmoking guinea pig models. Anesthesiology. 2006;105:753–763.

    Article  CAS  PubMed  Google Scholar 

  10. Sakurada T, Abe M, Kodani M, Sakata N, Katsuragi T. Synergistic effects of pranlukast and a leukotriene B4 receptor antagonist on antigen-induced pulmonary reaction. Eur J Pharmacol. 1990;370:153–159.

    Article  Google Scholar 

  11. Boban M, Stowe DF, Buljubasic N, Kampine JP, Bosnjak ZJ. Direct comparative effects of isoß urane and desß urane in isolated guinea pig heart. Anesthesiology. 1992;76:775–780.

    Article  CAS  PubMed  Google Scholar 

  12. AndrŽ E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, et al. Cigarette smoke-induced neurogenic inß ammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest. 2008;118:2574–2582.

    Google Scholar 

  13. Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, et al. HC-030031, a TRPA1 selective antagonist, attenuates inß ammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain. 2008;4:48.

    Article  PubMed  Google Scholar 

  14. Cuypers E, Yanagihara A, Karlsson E, Tytgat J. Jellyþsh and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 2006;580:5728–5732.

    Article  CAS  PubMed  Google Scholar 

  15. Fajardo O, Meseguer V, Belmonte C, Viana F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci. 2008;28:7863–7875.

    Article  CAS  PubMed  Google Scholar 

  16. Maggi CA, Giuliani S, Ballati L, Lecci A, Manzini S, Patacchini R, et al. In vivo evidence for tachykininergic transmission using a new NK-2 receptor-selective antagonist, MEN 10 376. J Pharmacol Exp Ther. 1991;257:1172–1178.

    CAS  PubMed  Google Scholar 

  17. Woolf CJ, Ma Q. NociceptorsÑnoxious stimulus detectors. Neuron. 2007;55:353–364.

    Article  CAS  PubMed  Google Scholar 

  18. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP. General anesthetics activate a nociceptive ion channel to enhance pain and inß ammation. Proc Natl Acad Sci U S A. 2008;105:8784–8789.

    Article  CAS  PubMed  Google Scholar 

  19. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inß ammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–1282.

    Article  CAS  PubMed  Google Scholar 

  20. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Mac-Glashan M, Braun A, Undem BJ. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586:1595–1604.

    Article  CAS  PubMed  Google Scholar 

  21. Lee LY, Lou YP, Hong JL, Lundberg JM. Cigarette smokeinduced bronchoconstriction and release of tachykinins in guinea pig lungs. Respir Physiol. 1995;99:173–181.

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, Priestley JV. Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience. 2006;141:1533–1543.

    Article  CAS  PubMed  Google Scholar 

  23. Kummer W, Fischer A, Kurkowski R, Heym C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience. 1992;49:715–737.

    Article  CAS  PubMed  Google Scholar 

  24. Maggi CA, Giachetti A, Dey RD, Said SI. Neuropeptides as regulators of airway function: vasoactive intestinal peptide and the tachykinins. Physiol Rev. 1995;75:277–322.

    CAS  PubMed  Google Scholar 

  25. Cervin A, Lindberg S. Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth. 1998;80:475–480.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Satoh, JI., Yamakage, M. Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers. J Anesth 23, 620–623 (2009). https://doi.org/10.1007/s00540-009-0786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-009-0786-8

Key words

Navigation