Skip to main content

Advertisement

Log in

Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The KCNJ11 and ABCC8 genes encode the components of the pancreatic ATP-sensitive potassium (KATP) channel, which regulates insulin secretion by β-cells and hence could be involved in the pathogenesis of type 2 diabetes (T2D). The KCNJ11 E23K and ABCC8 exon 31 variants have been studied in 127 Russian T2D patients and 117 controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach. The KCNJ11 E23 variant and the ABCC8 exon 31 allele A were associated with higher risk of T2D [Odds ratio (OR) of 1.53 (= 0.023) and 2.41 (= 1.95 × 10−5)], respectively. Diabetic carriers of the ABCC8 G/G variant had reduced 2 h glucose compared to A/A + A/G (= 0.031). The G/G genotype of ABCC8 was also significantly associated with increased both fasting and 2 h serum insulin in diabetic and non-diabetic patients. A HOMA-β value characterizing the β-cell homeostasis was higher in the non-diabetic carriers homozygous for G/G (98.0 ± 46.9) then for other genotypes (HOMA-β = 85.6 ± 45.5 for A/A + A/G, = 0.0015). The KCNJ11 E23K and ABCC8 exon 31 variants contribute to susceptibility to T2D diabetes, glucose intolerance and altered insulin secretion in a Russian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 8:133–176

    Article  Google Scholar 

  2. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    Article  PubMed  CAS  Google Scholar 

  3. Smith AJ, Taneja TK, Mankouri J, Sivaprasadao A (2007) Molecular cell biology of KATP channels: implications for neonatal diabetes. Expert Rev Mol Med 9:1–17

    Article  PubMed  CAS  Google Scholar 

  4. Nichols CG, Koster JC, Remedi MS (2007) β-cell hyperexcitability: from hyperinsulinism to diabetes. Diabetes Obes Metab 9:81–88

    Article  PubMed  CAS  Google Scholar 

  5. Schwanstecher C, Meyer U, Schwanstecher M (2002) KIR6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K channels. Diabetes 51:875–879

    Article  PubMed  CAS  Google Scholar 

  6. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P (1998) Missense mutations of the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 41:1511–1515

    Article  PubMed  CAS  Google Scholar 

  7. Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC (2003) Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med 18:206–212

    Article  Google Scholar 

  8. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, levy JC, Sampson M, Halford S, McCarthy MI, Hatterlsey AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572

    Article  PubMed  CAS  Google Scholar 

  9. Florez JC, Jablonski KA, Kahn SE, Franks PW, Dabelea D, Hamman RF, Knowler WC, Altshuler D (2007) Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 56:531–536

    Article  PubMed  CAS  Google Scholar 

  10. Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguchi Y, Moritani M, Kunika K, Nakamura N, Yoshikawa T, Yasui N, Shiota H, Tanahashi T, Itakura M (2007) SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet 52:781–793

    Article  PubMed  CAS  Google Scholar 

  11. Doi Y, Kubo M, Ninomiya T, Yonemoto K, Iwase M, Arima H, Hata J, Tanizaki Y, Iida M, Kiyohara Y (2007) Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: the Hisayama Study. Diabetes 56:2829–2833

    Article  PubMed  CAS  Google Scholar 

  12. Shaat N, Ekelund M, Lernmark A, Ivarsson S, Almgren P, Berntorp K, Groop L (2005) Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus. Diabetologia 48:2544–2551

    Article  PubMed  CAS  Google Scholar 

  13. Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577

    Article  PubMed  CAS  Google Scholar 

  14. Florez JC, Burtt N, de Bakker PIW, Almgren P, Tuomi T, Holmkvist J, Gaudet D, Hudson TJ, Schaffner SF, Daly MJ, Hirschhorn JN, Groop L, Altshuler D (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–1368

    Article  PubMed  CAS  Google Scholar 

  15. Lyssenko V, Almgren P, Anevski D, Orho-Melander M, Sjogren M, Saloranta C, Tuomi T, Groop L (2005) The Botnia Study Group: genetic prediction of future type 2 diabetes. PLoS Med 2:e345

    Article  PubMed  Google Scholar 

  16. van Dam RM, Hoebee B, Seidell JC, Schaap MM, de Bruin TWA, Feskens EJM (2005) Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet Med 22:590–598

    Article  PubMed  Google Scholar 

  17. Laukkanen O, Pihlajamaki J, Lindstrom J, Eriksson J, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kuikaanniemi S, Tuomilehto J, Uusitupa M, Laakso M (2004) Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) Genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J Clin Endocrinol Metab 89:6286–6290

    Article  PubMed  CAS  Google Scholar 

  18. Riedel MJ, Light PE (2005) Saturated and cis/trans unsaturated acyl CoA esters differentially regulate wild-type and polymorphic β-cell ATP-sensitive K+ channels. Diabetes 54:2070–2079

    Article  PubMed  CAS  Google Scholar 

  19. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice: a model for KATP channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277

    Article  PubMed  CAS  Google Scholar 

  20. Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren PO, Magnuson MA (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277:37176–37183

    Article  PubMed  CAS  Google Scholar 

  21. Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Hajafi H, Buettger CW, Collins HW, Carr RD, Magnuson MA, Matschinsky FM (2004) Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab 286:E834–E843

    Article  PubMed  CAS  Google Scholar 

  22. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80

    Article  PubMed  CAS  Google Scholar 

  23. Rissanen J, Markkanen A, Karkkainen P, Pihlajamaki J, Mykkanen L, Kuusisto J, Karhapaa P, Laakso M (2000) Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care 23:70–73

    Article  PubMed  CAS  Google Scholar 

  24. Hansen T, Ambye L, Grarup N, hansen L, Echward SM, Ferrer J, Pedersen O (2001) Genetic variability of the SUR1 promoter in relation to beta-cell function and Type II diabetes mellitus. Diabetologia 44:1330–1334

    Article  PubMed  CAS  Google Scholar 

  25. Elbein SC, Sun J, Scroggin E, Teng K, Hasstedt SJ (2001) Role of common sequence variants in insulin secretion in familial type 2 diabetic kindreds: the sulfonylurea receptor, glucokinase, and hepatocyte nuclear factor 1 alpha genes. Diabetes Care 24:472–478

    Article  PubMed  CAS  Google Scholar 

  26. Hart LM, Dekker JM, van Haeften TW, Ruige JB, Stehouwer CD, Erkelens DW, Heine RJ, Maassen JA (2000) Reduced second phase insulin secretion in carriers of a sulphonylurea receptor gene variant associating with Type II diabetes mellitus. Diabetologia 43:515–519

    Article  PubMed  CAS  Google Scholar 

  27. Barroso I, Luan J, Middelberg RPS, Harding AH, Franks PW, Jakes PW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 1:41–55

    Article  CAS  Google Scholar 

  28. Reis AF, Ye WZ, Dubois-Laforgue D, Bellanne-Chantelot C, Timsit J, Velho G (2000) Association of a variant in exon 31 of the sulfonylurea receptor 1 (SUR1) gene with type 2 diabetes mellitus in French Caucasians. Hum Genet 107:138–144

    Article  PubMed  CAS  Google Scholar 

  29. Goksel DL, Fischbach K, Duggirala R, Mitchell BD, Aguilar-Bryan L, Blangero J, Stern MP, O’Connell P (1998) Variant in sulfonylurea re ceptor-1 gene is associated with high insulin concentrations in non-diabetic Mexican Americans: SUR1 gene variant and hyperinsulinemia. Hum Genet 103:280–285

    Article  PubMed  CAS  Google Scholar 

  30. Kilpelainen TO, Lakka TA, Laaksonen DE, Laukkanen O, Lundstrom J, Eriksson JG, Valle TT, Hamalainen H, Aunola S, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Tuomilehto J, Uusitupa M (2007) Laakso M (2007) Physical activity modifies the effect of SNPs in the SLC2A2 (GLUT2) and ABCC8 (SUR1) genes on the risk of developing type 2 diabetes. Physiol Genomics 31:264–272

    Article  PubMed  CAS  Google Scholar 

  31. WHO (1985) Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser 727:1–113

  32. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  33. Bland JM, Altman DG (2000) The odds ratio. BMJ 320:1468

    Article  PubMed  CAS  Google Scholar 

  34. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Jarvinen H, Van Haeften T, Renn W, Gerich J (2000) Use of the oral glucose tolerance test to access insulin release and insulin sensitivity. Diabetes Care 23:295–301

    Article  PubMed  CAS  Google Scholar 

  35. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495

    Article  PubMed  Google Scholar 

  36. Love-Gregory L, Wasson J, Lin J, Skolnick G, Suarez B, Permutt MA (2003) E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of type II diabetes in Caucasians as the PPARγ Pro12Ala variant. Diabetologia 46:136–137

    PubMed  CAS  Google Scholar 

  37. Tschritter O, Stimvoll M, Machicao F, Holzwarth M, Wiesser M, Maerker E, Teigeler A, Haring H, Fritsche A (2002) The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (Kir6.2) gene secretion is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51:3135–3138

    Article  Google Scholar 

  38. Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Kruppeit-Drews P, Aguilar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Eur J Physiol 453:703–718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Chistiakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chistiakov, D.A., Potapov, V.A., Khodirev, D.C. et al. Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 46, 43–49 (2009). https://doi.org/10.1007/s00592-008-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-008-0056-5

Keywords

Navigation