Skip to main content

Advertisement

Log in

Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease

  • Movement Disorders - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

One common feature of neurodegenerative diseases is neuroinflammation. In the case of Parkinson’s disease (PD), neuroinflammation appears early and persists throughout the disease course. The principal cellular mediator of brain inflammation is the resident microglia which share many features with related hematopoietically derived macrophages. Microglia can become activated by misfolded proteins including the PD relevant example, α-synuclein, a presynaptic protein. When activated, microglia release pro-inflammatory diffusible mediators that promote dysfunction and contribute to the death of the PD vulnerable dopaminergic neurons in the midbrain. Recently, the orphan nuclear receptor Nurr1, well known as a critical determinant in dopaminergic neuron maturation, has been ascribed two new properties. First, it promotes the production and release of the neuropeptide vasoactive intestinal peptide that functions both to stimulate dopaminergic neuron survival and inhibit neuroinflammation. Second, Nurr1 suppresses the expression and release of pro-inflammatory cytokines in glial cells. Herein, we discuss these new findings in context of strategies to attenuate neuroinflammation in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahn TB, Kim SY et al (2008) alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 70(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Alavian KN, Scholz C et al (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23(3):319–328

    Article  PubMed  Google Scholar 

  • Banati RB (2002) Visualising microglial activation in vivo. Glia 40(2):206–217

    Article  PubMed  Google Scholar 

  • Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856

    Article  PubMed  Google Scholar 

  • Bartels AL, Willemsen AT et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59

    Article  PubMed  CAS  Google Scholar 

  • Bensinger SJ, Tontonoz P (2009) A Nurr1 pathway for neuroprotection. Cell 137(1):26–28

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925

    Article  PubMed  Google Scholar 

  • Brenneman DE, Glazner G et al (1998) VIP neurotrophism in the central nervous system: multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Ann N Y Acad Sci 865:207–212

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ (2007) Assessment of Parkinson’s disease with imaging. Parkinsonism Relat Disord 13(Suppl 3):S268–S275

    Article  PubMed  Google Scholar 

  • Bucciantini M, Giannoni E et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511

    Article  PubMed  CAS  Google Scholar 

  • Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22–27

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97(2):571–576

    Article  PubMed  CAS  Google Scholar 

  • Dejda A, Sokolowska P et al (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep 57(3):307–320

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003a) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17(8):944–946

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003b) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J 17(13):1922–1924

    PubMed  CAS  Google Scholar 

  • Delgado M, Jonakait GM et al (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39(2):148–161

    Article  PubMed  Google Scholar 

  • Delgado M, Leceta J et al (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73(1):155–164

    Article  PubMed  CAS  Google Scholar 

  • Dorsey ER, Constantinescu R et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  PubMed  CAS  Google Scholar 

  • Dubow JS (2007) Autonomic dysfunction in Parkinson’s disease. Dis Mon 53(5):265–274

    Article  PubMed  Google Scholar 

  • Eberling JL, Jagust WJ et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Nagala S et al (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310(1):157–168

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Walsh DM et al (2003) Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol 2(8):461–462

    Article  PubMed  Google Scholar 

  • Federoff HJ (2009) Nur(R1)turing a notion on the etiopathogenesis of Parkinson’s disease. Neurotox Res 16(3):261–270

    Article  PubMed  CAS  Google Scholar 

  • Gerhard A, Pavese N et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412

    Article  PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105

    Article  PubMed  Google Scholar 

  • Grinberg LT, Rueb U et al (2010) Brainstem pathology and non-motor symptoms in PD. J Neurol Sci 289(1–2):81–88

    Article  PubMed  Google Scholar 

  • Imamura K, Hishikawa N et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J, Chen S et al (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138

    Article  PubMed  CAS  Google Scholar 

  • Kaplitt MG, Feigin A et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann H, Nahm K et al (2004) Autonomic failure as the initial presentation of Parkinson disease and dementia with Lewy bodies. Neurology 63(6):1093–1095

    PubMed  Google Scholar 

  • Khoo TK, Burn DJ (2009) Non-motor symptoms may herald Parkinson’s disease. Practitioner 253(1721):19–24

    PubMed  Google Scholar 

  • Krogh K, Ostergaard K et al (2008) Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol Scand 117(1):60–64

    PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    Article  PubMed  CAS  Google Scholar 

  • Lapointe N, St-Hilaire M et al (2004) Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 18(6):717–719

    PubMed  CAS  Google Scholar 

  • Le W, Conneely OM et al (1999) Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73(5):2218–2221

    PubMed  CAS  Google Scholar 

  • Le WD, Xu P et al (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33(1):85–89

    Article  PubMed  CAS  Google Scholar 

  • Le W, Pan T et al (2008) Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 273(1–2):29–33

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Suk JE et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Henricksen LA et al (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp Neurol 203(1):221–232

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Xing F et al (2008) Identification of a novel nurr1-interacting protein. J Neurosci 28(37):9277–9286

    Article  PubMed  CAS  Google Scholar 

  • Maguire-Zeiss KA (2008) alpha-Synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res 58:271–280

    Article  PubMed  CAS  Google Scholar 

  • Maguire-Zeiss KA, Federoff HJ (2009) Immune-directed gene therapeutic development for Alzheimer’s, prion, and Parkinson’s diseases. J Neuroimmune Pharmacol 4(3):298–308

    Article  PubMed  Google Scholar 

  • Maguire-Zeiss KA, Su X et al (2008) Microglial activation in a mouse model of alpha-synuclein overexpression. Elsevier, San Diego

    Google Scholar 

  • Marks WJ Jr, Ostrem JL et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408

    Article  PubMed  Google Scholar 

  • McGeer PL, Itagaki S et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    PubMed  CAS  Google Scholar 

  • Offen D, Sherki Y et al (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res 854(1–2):257–262

    Article  PubMed  CAS  Google Scholar 

  • Ouchi Y, Yoshikawa E et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175

    Article  PubMed  CAS  Google Scholar 

  • Ouchi Y, Yagi S et al (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S200–S204

    Article  PubMed  Google Scholar 

  • Perlmann T, Wallen-Mackenzie A (2004) Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res 318(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Poewe W (2007) Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 22(Suppl 17):S374–S378

    Article  PubMed  Google Scholar 

  • Polymeropoulos MH (2000) Genetics of Parkinson’s disease. Ann N Y Acad Sci 920:28–32

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Higgins JJ et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science 274(5290):1197–1199

    Article  PubMed  CAS  Google Scholar 

  • Saijo K, Winner B et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Satake W, Nakabayashi Y et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Simon-Sanchez J, Schulte C et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  PubMed  CAS  Google Scholar 

  • Singleton A, Gwinn-Hardy K et al (2004) Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain 127(Pt 4):768–772

    Article  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA et al (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473

    Article  PubMed  CAS  Google Scholar 

  • Su X, Maguire-Zeiss KA et al (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701

    Article  PubMed  CAS  Google Scholar 

  • Su X, Federoff HJ et al (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16(3):238–254

    Article  PubMed  CAS  Google Scholar 

  • Thiruchelvam MJ, Powers JM et al (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19(4):845–854

    Article  PubMed  CAS  Google Scholar 

  • Tolosa E, Compta Y et al (2007) The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl):S2–S7

    Article  PubMed  Google Scholar 

  • Wang Z, Benoit G et al (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom RH, Solomin L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wang T et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    Article  PubMed  CAS  Google Scholar 

  • Zheng K, Heydari B et al (2003) A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease. Arch Neurol 60(5):722–725

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Federoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maguire-Zeiss, K.A., Federoff, H.J. Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease. J Neural Transm 117, 1019–1025 (2010). https://doi.org/10.1007/s00702-010-0431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0431-6

Keywords

Navigation